Skip to main content

Advertisement

Log in

SUMO1 depletion prevents lipid droplet accumulation and HCV replication

  • Brief Report
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Infection by hepatitis C virus (HCV) is a major public-health problem. Chronic infection often leads to cirrhosis, steatosis, and hepatocellular carcinoma. The life cycle of HCV depends on the host cell machinery and involves intimate interaction between viral and host proteins. However, the role of host proteins in the life cycle of HCV remains poorly understood. Here, we identify the small ubiquitin-related modifier (SUMO1) as a key host factor required for HCV replication. We performed a series of cell biology and biochemistry experiments using the HCV JFH-1 (Japanese fulminate hepatitis 1) genotype 2a strain, which produces infectious particles and recapitulates all the steps of the HCV life cycle. We observed that SUMO1 is upregulated in Huh7.5 infected cells. Reciprocally, SUMO1 was found to regulate the expression of viral core protein. Moreover, knockdown of SUMO1 using specific siRNA influenced the accumulation of lipid droplets and reduced HCV replication as measured by qRT-PCR. Thus, we identify SUMO1 as a key host factor required for HCV replication. To our knowledge, this is the first report showing that SUMO1 regulates lipid droplets in the context of viral infection. Our report provides a meaningful insight into how HCV replicates and interacts with host proteins and is of significant importance for the field of HCV and RNA viruses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. El-Serag HB (2012) Epidemiology of viral hepatitis and hepatocellular carcinoma. Gastroenterology 142:1264–1273

    Article  PubMed  PubMed Central  Google Scholar 

  2. Bartenschlager R, Penin F, Lohmann V, André P (2011) Assembly of infectious hepatitis C virus particles. Trends Microbiol 19:95–103

    Article  PubMed  CAS  Google Scholar 

  3. Moradpour D, Penin F, Rice CM (2007) Replication of hepatitis C virus. Nat Rev Microbiol 5:453–463

    Article  PubMed  CAS  Google Scholar 

  4. Romero-Brey I, Merz A, Chiramel A, Lee JY, Chlanda P, Haselman U, Santarella-Mellwig R, Habermann A, Hoppe S, Kallis S et al (2012) Three-dimensional architecture and biogenesis of membrane structures associated with hepatitis C virus replication. PLoS Pathog 8(12):e1003056

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Ferraris P, Blanchard E, Roingeard P (2010) Ultrastructural and biochemical analyses of hepatitis C virus-associated host cell membranes. J Gen Virol 9:2230–2237

    Article  CAS  Google Scholar 

  6. Jacobson IM et al (2011) Telaprevir for previously untreated chronic hepatitis C virus infection. N Engl J Med 364:2405–2416

    Article  PubMed  CAS  Google Scholar 

  7. Poordad F et al (2011) Boceprevir for untreated chronic HCV genotype 1 infection. N Engl J Med 364:1195–1206

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Singal AG, Volk M, Jensen D et al (2010) A sustained viral response is associated with reduced liver related morbidity and mortality in patients with hepatitis C virus. Clin Gastroenterol Hepatol 8:280–288

    Article  PubMed  Google Scholar 

  9. Gane EJ et al (2013) Nucleotide polymerase inhibitor sofosbuvir plus ribavirin for hepatitis C. N Engl J Med 368:34–44

    Article  PubMed  CAS  Google Scholar 

  10. Afdhal N et al (2014) Ledipasvir and sofosbuvir for untreated HCV genotype 1 infection. N Engl J Med 370:1889–1898

    Article  PubMed  CAS  Google Scholar 

  11. Casey LC, Lee WM (2013) Hepatitis C virus therapy update. Curr Opin Gastroenterol 29(3):243–249

    PubMed  Google Scholar 

  12. Poveda E, Wyles DL, Mena A, Pedreira JD, Castro-Iglesias A, Cachay E (2014) Update on hepatitis C virus resistance to direct-acting antiviral agents. Antiviral Res 108:181–191

    Article  PubMed  CAS  Google Scholar 

  13. Paolucci S, Fiorina L, Mariani B, Gulminetti R, Novati S, Barbarini G, Bruno R, Baldanti F (2014) Naturally occurring resistance mutations to inhibitors of HCV NS5A region and NS5B polymerase in DAA treatment-naïve patients. Virol J 17:355–362

    Google Scholar 

  14. Halfon P, Locarnini S (2011) Hepatitis C virus resistance to protease inhibitors. J Hepatol 55:192–206

    Article  PubMed  CAS  Google Scholar 

  15. Miyanari Y, Atsuzawa K, Usuda N, Watashi K, Hishiki T, Zayas M, Bartenschlager R, Wakita T, Hijikata M, Shimotohno K (2007) The lipid droplet is an important organelle for hepatitis C virus production. Nat Cell Biol 9:1089–1097

    Article  PubMed  CAS  Google Scholar 

  16. Negro F (2009) Correction of insulin resistance in chronic hepatitis C patients not responding to the standard of care: more questions than answers. J Hepatol 50:1271–1282

    Article  PubMed  Google Scholar 

  17. Depla M, Uzbekov R, Hourioux C, Blanchard E, Le Gouge A, Gillet L, Roingeard P (2010) Ultrastructural and quantitative analysis of the lipid droplet clustering induced by hepatitis C virus core protein. Cell Mol Life Sci 67:3151–3161

    Article  PubMed  CAS  Google Scholar 

  18. Barba G, Harper F, Harada T, Kohara M, Goulinet S, Matsuura Y, Eder G, Schaff Z, Chapman MJ, Miyamura T, Brechot C (1997) Hepatitis C virus core protein shows a cytoplasmic localization and associates to cellular lipid storage droplets. Proc Natl Acad Sci 94:1200–1205

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Walther TC, Farese RV Jr (2012) Lipid droplets and cellular lipid metabolism. Annu Rev Biochem 8:687–714

    Article  CAS  Google Scholar 

  20. Lee GY, Jang H, Lee JH, Huh JY, Choi S, Chung J, Kim JB (2014) PIASy-mediated sumoylation of SREBP1c regulates hepatic lipid metabolism upon fasting signaling. Mol Cell Biol 34:926–938

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Yang FM, Pan CT, Tsai HM, Chiu TW, Wu ML, Hu MC (2009) Liver receptor homolog-1 localization in the nuclear body is regulated by sumoylation and cAMP signaling in rat granulosa cells. FEBS J 276:425–436

    Article  PubMed  CAS  Google Scholar 

  22. Talamillo Ana, Martín David, Hjerpe Roland, Sánchez Jonatan, Barrio Rosa (2010) SUMO and ubiquitin modifications during steroid hormone synthesis and function. Biochem Soc Trans 38:54–59

    Article  PubMed  CAS  Google Scholar 

  23. Liu B, Wang T, Mei W, Li D, Cai R, Zuo Y, Cheng J (2014) Small ubiquitin-like modifier (SUMO) protein-specific protease 1 de-SUMOylates Sharp-1 protein and controls adipocyte differentiation. J Biol Chem 289:22358–22364

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Mahajan R, Delphin C, Guan T, Gerace L, Melchior F (1997) A small ubiquitin-related polypeptide involved in targeting RanGAP1 to nuclear pore complex protein RanBP2. Cell 88:97–107

    Article  PubMed  CAS  Google Scholar 

  25. Kurepa J, Walker JM, Smalle J, Gosink MM, Davis SJ, Durham TL, Sung DY, Vierstra RD (2003) The small ubiquitin-like modifier (SUMO) protein modification system in Arabidopsis. Accumulation of SUMO1 and -2 conjugates is increased by stress. J Biol Chem 278:6862–6872

    Article  PubMed  CAS  Google Scholar 

  26. Gareau JR, Lima CD (2010) The SUMO pathway: emerging mechanisms that shape specificity, conjugation and recognition. Nat Rev Mol Cell Biol 11:861–871

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Hay RT (2005) SUMO: a history of modification. Mol Cell 18:1201–1212

    Article  CAS  Google Scholar 

  28. Chang P-C, Kung H-J (2014) SUMO and KSHV replication Kaposi’s sarcoma-associated herpesvirus. Cancers 6:1905–1924

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Santos A, Chacon J, Rosas-Acosta G (2013) Influenza A virus multiplication and the cellular SUMOylation system. Viral Replication 953:1055–1062

    Google Scholar 

  30. Kato T, Date T, Murayama A, Morikawa K, Akazawa D, Wakita T (2006) Cell culture and infection system for hepatitis C virus. Nat Protoc 1:2334–2339

    Article  PubMed  CAS  Google Scholar 

  31. Depla M, Uzbekov R, Hourioux C, Blanchard E, Le Gouge A, Gillet L, Roingeard P (2010) Ultrastructural and quantitative analysis of the lipid droplet clustering induced by hepatitis C virus core protein. Cell Mol Life Sci 67:3151–3161

    Article  PubMed  CAS  Google Scholar 

  32. Pal S, Santos A, Rosas JM, Ortiz-Guzman J, Rosas-Acosta G (2011) Influenza A virus interacts extensively with the cellular SUMOylation system during infection. Virus Res 158(1–2):12–27

    Article  PubMed  CAS  Google Scholar 

  33. Dunphy PS, Luo T, McBride JW (2014) Ehrlichia chaffeensis exploits host SUMOylation pathways to mediate effector-host interactions and promote intracellular survival. Infect Immun 82:4154–4168

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Everett RD, Boutell C, Hale BG (2013) Interplay between viruses and host sumoylation pathways. Nat Rev Microbiol 11:400–411

    Article  PubMed  CAS  Google Scholar 

  35. Herker E, Ott M (2012) Emerging role of lipid droplets in host/pathogen interactions. J Biol Chem 287:2280–2287

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Molina S, Castet V, Fournier-Wirth C, Pichard-Garcia L, Avner R, Harats D, Roitelman J, Barbaras R, Graber P, Ghersa P, Smolarsky M, Funaro A, Malavasi F, Larrey D, Coste J, Fabre JM, Sa-Cunha A, Maurel P (2007) The low-density lipoprotein receptor plays a role in the infection of primary human hepatocytes by hepatitis C virus. J Hepatol 46:411–419

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

A.A. was supported by a fellowship from RII Pasteur, University of Paris XI and CHB association. CG was supported by a grant from ANRS. This work was supported by a grant from Association pour la Recherche sur le Cancer (ARC/SUBV/CKLQ6) to AGD. We thank all the members of the INSERM U785 for their helpful discussions. We thank A. Jalil, E. Perret from the imagery services at IGR (Villejuif) and Institut Pasteur (Paris), and Dr. Di Liu from University of Alabama at Birmingham.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdellah Akil.

Electronic supplementary material

Below is the link to the electronic supplementary material.

705_2015_2628_MOESM1_ESM.pdf

SI Fig. 1 Immunofluorescence analysis of core (green), LDs (red) and nuclei (blue) in Huh7.5 cells infected with HCV for 24 hours and then transfected with control siRNA (siNSC) or with SUMO1 si RNA (100 pmoles/assay) for another 24 hours at 37 °C. At 24 hours post-transfection, cells were fixed with a 3.7 % paraformaldehyde. Scale bar, 10 µm (PDF 250 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akil, A., Wedeh, G., Zahid Mustafa, M. et al. SUMO1 depletion prevents lipid droplet accumulation and HCV replication. Arch Virol 161, 141–148 (2016). https://doi.org/10.1007/s00705-015-2628-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-015-2628-3

Keywords

Navigation