Skip to main content

Advertisement

Log in

Role of chicken melanoma differentiation-associated gene 5 in induction and activation of innate and adaptive immune responses to infectious bursal disease virus in cultured macrophages

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

The objective of the present study was to determine if chicken melanoma-differentiation-associated gene 5 (MDA5) senses infectious bursal disease virus infection to induce innate immunity that bridges to adaptive immunity. During IBDV infection in HD11 cells, IBDV titers and RNA loads increased up to 3.4 × 107 plaque-forming units (PFU)/mL and 1114 ng/µL, respectively, at 24 hours postinfection (hpi). IBDV infection in HD11 cells induced significantly upregulated (p < 0.05) expression levels of chicken MDA5 (59-fold), interferon-β (IFN-β) (693-fold), dsRNA-dependent protein kinase (PKR) (4-fold), 2’, 5’-oligoadenylate synthetase (OAS) (286-fold), myxovirus resistance gene (Mx) (22-fold), interleukin-1β (IL-1β) (5-fold), IL-6 (146-fold), IL-8 (4-fold), IL-10 (4-fold), inducible nitric oxide synthase (iNOS) (15-fold), and major histocompatibility complex class I (MHC class I) (4-fold). Nitric oxide production in the culture supernatants increased significantly (p < 0.05) up to 6.5 μM at 24 hpi. The expressed chMDA5 and IBDV-derived dsRNA were localized in the cytoplasm of HD11 cells during IBDV infection. ChMDA5-knockdown HD11 cells had significantly higher (p < 0.05) IBDV RNA loads at 24 hpi and significantly lower (p < 0.05) nitric oxide production and expression levels of chicken MDA5, IFN-β, PKR, OAS, Mx, IL-1β, IL-6, IL-8, IL-12(p40), IL-18, IL-10, iNOS, MHC class I and CD86 at 24 hpi. In addition, chMDA5 overexpression in HD11 cells resulted in significantly reduced (p < 0.05) IBDV titers and RNA loads and significantly increased (p < 0.05) nitric oxide production at 16 and 24 hpi. It also resulted in significantly higher (p < 0.05) expression levels of chicken MDA5, IFN-β, PKR, OAS, Mx, IL-1β, IL-6, IL-8, IL-12(p40), IL-10 and iNOS at 2 hpi. In conclusion, the results indicate that chMDA5 senses IBDV infection in chicken macrophages, and this is associated with IBDV-induced expression of IFN-β and initiation of an innate immune response that in turn activates the adaptive immune response and limits IBDV replication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Aricibasi M, Jung A, Heller ED, Rautenschlein S (2010) Differences in genetic background influence the induction of innate and acquired immune responses in chickens depending on the virulence of the infecting infectious bursal disease virus (IBDV) strain. Vet Immunol Immunopathol 135:79–92

    Article  CAS  PubMed  Google Scholar 

  2. Barber MR, Aldridge JR Jr, Webster RG, Magor KE (2010) Association of RIG-I with innate immunity of ducks to influenza. Proc Natl Acad Sci USA 107:5913–5918

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Berghall H, Siren J, Sarkar D, Julkunen I, Fisher PB, Vainionpaa R, Matikainen S (2006) The interferon-inducible RNA helicase, mda-5, is involved in measles virus-induced expression of antiviral cytokines. Microbes Infect 8:2138–2144

    Article  PubMed  Google Scholar 

  4. Beug H, von Kirchback A, Doderlein G, Conscience J, Graf T (1979) Chicken hematopoietic cells transformed by seven strains of defective avian leukemia viruses display three distinct phenotypes of differentiation. Cell 18:375–390

    Article  CAS  PubMed  Google Scholar 

  5. Bogdan C (2001) Nitric oxide and the immune response. Nat Immunol 2:907–916

    Article  CAS  PubMed  Google Scholar 

  6. Chauveau E, Doceul V, Lara E, Adam M, Breard E, Sailleau C, Viarouge C, Desprat A, Meyer G, Schwartz-Cornil I, Ruscanu S, Charley B, Zientara S, Vitour D (2012) Sensing and control of bluetongue virus infection in epithelial cells via RIG-I and MDA5 helicases. J Virol 86:11789–11799

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Crampton SP, Deane JA, Feigenbaum L, Bolland S (2012) Ifih1 gene dose effect reveals MDA5-mediated chronic type I IFN gene signature, viral resistance, and accelerated autoimmunity. J Immunol 188:1451–1459

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Degen WG, van Daal N, van Zuilekom HI, Burnside J, Schijns VE (2004) Identification and molecular cloning of functional chicken IL-12. J Immunol 172:4371–4380

    Article  CAS  PubMed  Google Scholar 

  9. DeWitte-Orr SJ, Mehta DR, Collins SE, Suthar MS, Gale M Jr, Mossman KL (2009) Long double-stranded RNA induces an antiviral response independent of IFN regulatory factor 3, IFN-beta promoter stimulator 1, and IFN. J Immunol 183:6545–6553

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Gitlin L, Barchet W, Gilfillan S, Cella M, Beutler B, Flavell RA, Diamond MS, Colonna M (2006) Essential role of mda-5 in type I IFN responses to polyriboinosinic:polyribocytidylic acid and encephalomyocarditis picornavirus. Proc Natl Acad Sci USA 103:8459–8464

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Gobel TW, Schneider K, Schaerer B, Mejri I, Puehler F, Weigend S, Staeheli P, Kaspers B (2003) IL-18 stimulates the proliferation and IFN-gamma release of CD4+ T cells in the chicken: conservation of a Th1-like system in a nonmammalian species. J Immunol 171:1809–1815

    Article  PubMed  Google Scholar 

  12. He H, Genovese KJ, Kogut MH (2011) Modulation of chicken macrophage effector function by T(H)1/T(H)2 cytokines. Cytokine 53:363–369

    Article  CAS  PubMed  Google Scholar 

  13. He H, Genovese KJ, Swaggerty CL, MacKinnon KM, Kogut MH (2012) Co-stimulation with TLR3 and TLR21 ligands synergistically up-regulates Th1-cytokine IFN-gamma and regulatory cytokine IL-10 expression in chicken monocytes. Dev Comp Immunol 36:756–760

    Article  CAS  PubMed  Google Scholar 

  14. He H, Genovese KJ, Swaggerty CL, Nisbet DJ, Kogut MH (2013) Nitric oxide as a biomarker of intracellular Salmonella viability and identification of the bacteriostatic activity of protein kinase A inhibitor H-89. PLos One 8:e58873

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Himly M, Foster DN, Bottoli I, Iacovoni JS, Vogt PK (1998) The DF-1 chicken fibroblast cell line: transformation induced by diverse oncogenes and cell death resulting from infection by avian leukosis viruses. Virology 248:295–304

    Article  CAS  PubMed  Google Scholar 

  16. Karpala AJ, Stewart C, McKay J, Lowenthal JW, Bean AG (2011) Characterization of chicken Mda5 activity: regulation of IFN-β in the absence of RIG-I functionality. J Immunol 186:5397–5405

    Article  CAS  PubMed  Google Scholar 

  17. Kato H, Sato S, Yoneyama M, Yamamoto M, Uematsu S, Matsui K, Tsujimura T, Takeda K, Fujita T, Takeuchi O, Akira S (2005) Cell type-specific involvement of RIG-I in antiviral response. Immunity 23:19–28

    Article  CAS  PubMed  Google Scholar 

  18. Kato H, Takeuchi O, Sato S, Yoneyama M, Yamamoto M, Matsui K, Uematsu S, Jung A, Kawai T, Ishii KJ, Yamaguchi O, Otsu K, Tsujimura T, Koh CS, Reis e Sousa C, Matsuura Y, Fujita T, Akira S (2006) Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature 441:101–105

    Article  CAS  PubMed  Google Scholar 

  19. Kawai T, Akira S (2007) Antiviral signaling through pattern recognition receptors. J Biochem 141:137–145

    Article  CAS  PubMed  Google Scholar 

  20. Khatri M, Palmquist J, Cha R, Sharma J (2005) Infection and activation of bursal macrophages by virulent infectious bursal disease virus. Virus Res 113:44–50

    Article  CAS  PubMed  Google Scholar 

  21. Khatri M, Sharma J (2006) Infectious bursal disease virus infection induces macrophage activation via p38 MAPK and NF-kappaB pathways. Virus Res 118:70–77

    Article  CAS  PubMed  Google Scholar 

  22. Kim IJ, Karaca K, Pertile TL, Erickson SA, Sharma JM (1998) Enhanced expression of cytokine genes in spleen macrophages during acute infection with infectious bursal disease virus in chickens. Vet Immunol Immunopathol 61:331–341

    Article  CAS  PubMed  Google Scholar 

  23. Lam KM (1998) Alteration of chicken heterophil and macrophage functions by the infectious bursal disease virus. Microb Pathog 25:147–155

    Article  CAS  PubMed  Google Scholar 

  24. Lee CC, Wu CC, Lin TL (2012) Characterization of chicken melanoma differentiation-associated gene 5 (MDA5) from alternative translation initiation. Comp Immunol Microbiol Infect Dis 35:335–343

    Article  PubMed  Google Scholar 

  25. Lee CC, Wu CC, Lin TL (2014) Chicken melanoma differentiation-associated gene 5 (MDA5) recognizes infectious bursal disease virus infection and triggers MDA5-related innate immunity. Arch Virol 159:1671–1686

    Article  CAS  PubMed  Google Scholar 

  26. Li YP, Handberg KJ, Juul-Madsen HR, Zhang MF, Jorgensen PH (2007) Transcriptional profiles of chicken embryo cell cultures following infection with infectious bursal disease virus. Arch Virol 152:463–478

    Article  CAS  PubMed  Google Scholar 

  27. Liniger M, Summerfield A, Zimmer G, McCullough KC, Ruggli N (2011) Chicken cells sense influenza A virus infection through MDA5 and CARDIF signaling involving LGP2. J Virol 86:705–717

    Article  PubMed  Google Scholar 

  28. Liu H, Zhang M, Han H, Yuan J, Li Z (2010) Comparison of the expression of cytokine genes in the bursal tissues of the chickens following challenge with infectious bursal disease viruses of varying virulence. Virol J 7:364

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. McCartney SA, Thackray LB, Gitlin L, Gilfillan S, Virgin HW, Colonna M (2008) MDA-5 recognition of a murine norovirus. PLoS Pathog 4:e1000108

    Article  PubMed Central  PubMed  Google Scholar 

  30. Mosley YY, Wu CC, Lin TL (2013) Infectious bursal disease virus rescued efficiently with 3′ authentic RNA sequence induces humoral immunity without bursal atrophy. Vaccine 31:704–710

    Article  CAS  PubMed  Google Scholar 

  31. Muller H, Scholtissek C, Becht H (1979) The genome of infectious bursal disease virus consists of two segments of double-stranded RNA. J Virol 31:584–589

    PubMed Central  CAS  PubMed  Google Scholar 

  32. Ogawa M, Yamaguchi T, Setiyono A, Ho T, Matsuda H, Furusawa S, Fukushi H, Hirai K (1998) Some characteristics of a cellular receptor for virulent infectious bursal disease virus by using flow cytometry. Arch Virol 143:2327–2341

    Article  CAS  PubMed  Google Scholar 

  33. Ohtani M, Hikima J, Kondo H, Hirono I, Jung TS, Aoki T (2011) Characterization and antiviral function of a cytosolic sensor gene, MDA5, in Japanese flounder, Paralichthys olivaceus. Dev Comp Immunol 35:554–562

    Article  CAS  PubMed  Google Scholar 

  34. Palmquist J, Khatri M, Cha R, Goddeeris B, Walcheck B, Sharma J (2006) In vivo activation of chicken macrophages by infectious bursal disease virus. Viral Immunol 19:305–315

    Article  CAS  PubMed  Google Scholar 

  35. Peters MA, Lin TL, Wu CC (2005) Real-time RT-PCR differentiation and quantitation of infectious bursal disease virus strains using dual-labeled fluorescent probes. J Virol Methods 127:87–95

    Article  CAS  PubMed  Google Scholar 

  36. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:e45

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Pichlmair A, Schulz O, Tan C, Näslund T, Liljeström P, Weber F, Reis e Sousa C (2006) RIG-I-mediated antiviral responses to single-stranded RNA bearing 5′-phosphates. Science 314:997–1001

    Article  CAS  PubMed  Google Scholar 

  38. Rasoli M, Yeap SK, Tan SW, Roohani K, Kristeen-Teo YW, Alitheen NB, Rahaman YA, Aini I, Bejo MH, Kaiser P, Omar AR (2015) Differential modulation of immune response and cytokine profiles in the bursae and spleen of chickens infected with very virulent infectious bursal disease virus. BMC Vet Res 11:75

    Article  PubMed Central  PubMed  Google Scholar 

  39. Ruby T, Whittaker C, Withers DR, Chelbi-Alix MK, Morin V, Oudin A, Young JR, Zoorob R (2006) Transcriptional profiling reveals a possible role for the timing of the inflammatory response in determining susceptibility to a viral infection. J Virol 80:9207–9216

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Sanders SP, Siekierski ES, Porter JD, Richards SM, Proud D (1998) Nitric oxide inhibits rhinovirus-induced cytokine production and viral replication in a human respiratory epithelial cell line. J Virol 72:934–942

    PubMed Central  CAS  PubMed  Google Scholar 

  41. Schneider K, Puehler F, Baeuerle D, Elvers S, Staeheli P, Kaspers B, Weining KC (2000) cDNA cloning of biologically active chicken interleukin-18. J Interferon Cytokine Res 20:879–883

    Article  CAS  PubMed  Google Scholar 

  42. Schneider K, Klaas R, Kaspers B, Staeheli P (2001) Chicken interleukin-6. cDNA structure and biological properties. Eur J Biochem 268:4200–4206

    Article  CAS  PubMed  Google Scholar 

  43. Stark GR, Kerr IM, Williams BR, Silverman RH, Schreiber RD (1998) How cells respond to interferons. Annu Rev Biochem 67:227–264

    Article  CAS  PubMed  Google Scholar 

  44. Weining KC, Sick C, Kaspers B, Staeheli P (1998) A chicken homolog of mammalian interleukin-1 beta: cDNA cloning and purification of active recombinant protein. Eur J Biochem 258:994–1000

    Article  CAS  PubMed  Google Scholar 

  45. Wink DA, Hines HB, Cheng RY, Switzer CH, Flores-Santana W, Vitek MP, Ridnour LA, Colton CA (2011) Nitric oxide and redox mechanisms in the immune response. J Leukoc Biol 89:873–891

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Wong R, Hon C, Zeng F, Leung F (2007) Screening of differentially expressed transcripts in infectious bursal disease virus-induced apoptotic chicken embryonic fibroblasts by using cDNA microarrays. J Gen Virol 88:1785–1796

    Article  CAS  PubMed  Google Scholar 

  47. Wu CC, Rubinelli P, Lin TL (2007) Molecular detection and differentiation of infectious bursal disease virus. Avian diseases 51:515–526

    Article  PubMed  Google Scholar 

  48. Wu YF, Shien JH, Yin HH, Chiow SH, Lee LH (2008) Structural and functional homology among chicken, duck, goose, turkey and pigeon interleukin-8 proteins. Vet Immunol Immunopathol 125:205–215

    Article  CAS  PubMed  Google Scholar 

  49. Yoneyama M, Fujita T (2009) RNA recognition and signal transduction by RIG-I-like receptors. Immunol Rev 227:54–65

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The present study was supported by an internal Grant approved by the Research Advisory Board of Purdue University College of Veterinary Medicine. The authors also thank Dr. Uma Babu, United States Department of Agriculture (USDA, Beltsville, MD, USA), for providing HD11 chicken macrophage cells.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsang Long Lin.

Ethics declarations

The present study and the protocols used in the study were approved by Purdue University Animal Care and Use Committee and Institutional Biological Safety Committee. The authors declare their compliance to publication ethics. The authors also declare that they have no conflicts of interest in the present study and report.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, CC., Wu, C.C. & Lin, T.L. Role of chicken melanoma differentiation-associated gene 5 in induction and activation of innate and adaptive immune responses to infectious bursal disease virus in cultured macrophages. Arch Virol 160, 3021–3035 (2015). https://doi.org/10.1007/s00705-015-2612-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-015-2612-y

Keywords

Navigation