Skip to main content

Advertisement

Log in

Differential sensitivity of porcine endogenous retrovirus to APOBEC3-mediated inhibition

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Pigs are considered to be suitable xenotransplantation organ donors. However, the risk of pathogen transmission from pigs to humans is a major concern in the transplantation of porcine tissues. The porcine endogenous retroviruses (PERVs) PERV-A, PERV-A/C, and PERV-B can infect human cells, but PERV-C is an ecotropic virus infecting only pig cells. Thus, several strategies have been proposed to reduce PERV transmission in xenograft recipients. Human APOBEC3G (huA3G) is a single-strand DNA cytosine deaminase, which inactivates the coding capacity of the virus by deamination of cDNA cytosines to uracils. This reaction occurs within the (−) DNA strand during reverse transcription, resulting in a G-to-A mutation in the (+) strand. While recent data have shown that PERV-B is severely inhibited by huA3G and porcine A3Z2-Z3 (poA3F) in a pseudotype assay, little is known about PERV-C. Here, we compare the antiretroviral activities of huA3G, huA3F and poA3Z2-Z3 against PERV-C. Our data show that APOBEC3 was packaged into PERV-C particles and inhibited PERV-C replication in a dose-dependent manner. PERV-C infectivity was strongly inhibited by poA3Z2-Z3, but it did not markedly reduce PERV-B infectivity. This suggests that PERV-C Gag interacts efficiently with poA3Z2-Z3. In addition, we constructed stably huA3G- and poA3Z2-Z3-expressing 293-PERV-PK-CIRCE cells (human 293 cells infected with PK15-derived PERVs) to examine whether PERV is resistant to poA3Z2-Z3 in a virus-spreading assay. The stably expressed huA3G and poA3Z2-Z3 were more packaging-competent than transiently expressed APOBEC3 proteins. These results suggest that poA3Z2-Z3 can inhibit PERV replication in a pseudotype assay as well as in a virus-spreading assay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Boneva RS, Folks TM, Chapman LE (2001) Infectious disease issues in xenotransplantation. Clin Microbiol Rev 14:1–14

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Magre S, Takeuchi Y, Bartosch B (2003) Xenotransplantation and pig endogenous retroviruses. Rev Med Virol 13:311–329

    Article  PubMed  Google Scholar 

  3. Patience C, Takeuchi Y, Weiss RA (1997) Infection of human cells by an endogenous retrovirus of pigs. Nat Med 3:282–286

    Article  CAS  PubMed  Google Scholar 

  4. Takeuchi Y, Patience C, Magre S, Weiss RA, Banerjee PT, Le Tissier P, Stoye JP (1998) Host range and interference studies of three classes of pig endogenous retrovirus. J Virol 72:9986–9991

    CAS  PubMed Central  PubMed  Google Scholar 

  5. Bartosch B, Stefanidis D, Myers R, Weiss R, Patience C, Takeuchi Y (2004) Evidence and consequence of porcine endogenous retrovirus recombination. J Virol 78:13880–13890

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Harrison I, Takeuchi Y, Bartosch B, Stoye JP (2004) Determinants of high titer in recombinant porcine endogenous retroviruses. J Virol 78:13871–13879

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Lieber MM, Sherr CJ, Benveniste RE, Todaro GJ (1975) Biologic and immunologic properties of porcine type C viruses. Virology 66:616–619

    Article  CAS  PubMed  Google Scholar 

  8. Patience C, Takeuchi Y, Weiss RA (1997) Infection of human cells by an endogenous retrovirus of pigs. Nat Med 3:282–286

    Article  CAS  PubMed  Google Scholar 

  9. Todaro GJ, Benveniste RE, Lieber MM, Sherr CJ (1974) Characterization of a type C virus released from the porcine cell line PK(15). Virology 58:65–74

    Article  CAS  PubMed  Google Scholar 

  10. Wilson CA, Wong S, Muller J, Davidson CE, Rose TM, Burd P (1998) Type C retrovirus released from porcine primary peripheral blood mononuclear cells infects human cells. J Virol 72:3082–3087

    CAS  PubMed Central  PubMed  Google Scholar 

  11. Dieckhoff B, Karlas A, Hofmann A, Kues WA, Petersen B, Pfeifer A, Niemann HR, Denner KJ (2007) Inhibition of porcine endogenous retroviruses (PERVs) in primary porcine cells by RNA interference using lentiviral vectors. Arch Virol 152:629–634

    Article  CAS  PubMed  Google Scholar 

  12. Dörrschuck E, Fischer N, Bravo IG, Hanschmann KM, Kuiper H, Spötter A, Möller R, Cichutek K, Münk C, Tönjes RR (2011) Restriction of porcine endogenous retrovirus by porcine APOBEC3 cytidine deaminases. J Virol 85:3842–3857

    Article  PubMed Central  PubMed  Google Scholar 

  13. Dörrschuck E, Münk C, Tönjes RR (2008) APOBEC3 proteins and porcine endogenous retroviruses. Transpl Proc 40:959–961

    Article  Google Scholar 

  14. Fiebig U, Stephan O, Kurth R, Denner J (2003) Neutralizing antibodies against conserved domains of p15E of porcine endogenous retroviruses: basis for a vaccine for xenotransplantation? Virology 307:406–413

    Article  CAS  PubMed  Google Scholar 

  15. Jónsson SR, LaRue RS, Stenglein MD, Fahrenkrug SC, Andrésdóttir V, Harris RS (2007) The restriction of zoonotic PERV transmission by human APOBEC3G. PLoS One 12:e893

    Article  Google Scholar 

  16. Mattiuzzo G, Ivol S, Takeuchi Y (2010) Regulation of porcine endogenous retrovirus release by porcine and human tetherins. J Virol 84:2618–2622

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Qari SH, Magre S, García-Lerma JG, Hussain AI, Takeuchi Y, Patience C, Weiss RA, Heneine W (2001) Susceptibility of the porcine endogenous retrovirus to reverse transcriptase and protease inhibitors. J Virol 75:1048–1053

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Harris RS, Liddament MT (2004) Retroviral restriction by APOBEC proteins. Nature 4:868–877

    CAS  Google Scholar 

  19. Mbisa JL, Bu W, Pathak VK (2010) APOBEC3F and APOBEC3G inhibit HIV-1 DNA integration by different mechanisms. J Virol 84:5250–5259

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Aguiar RS, Peterlin BM (2008) APOBEC3 proteins and reverse transcription. Virus Res 134:74–85

    Article  CAS  PubMed  Google Scholar 

  21. Holmes RK, Malim MH, Bishop KN (2007) APOBEC-mediated viral restriction: not simply editing? Trends Biochem Sci 32:118–128

    Article  CAS  PubMed  Google Scholar 

  22. Goila-Gaur R, Strebel K (2008) HIV-1 Vif, APOBEC, and intrinsic immunity. Retrovirology 5:51

    Article  PubMed Central  PubMed  Google Scholar 

  23. Bogerd HP, Zhang F, Bieniasz PD, Cullen BR (2011) Human APOBEC3 proteins can inhibit xenotropic murine leukemia virus-related virus infectivity. Virology 410:234–239

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Langlois MA, Kemmerich K, Rada C, Neuberger MS (2009) The AKV murine leukemia virus is restricted and hypermutated by mouse APOBEC3. J Virol 83:11550–11559

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Sadler HA, Stenglein MD, Harris RS, Mansky LM (2010) APOBEC3G contributes to HIV-1 variation through sublethal mutagenesis. J Virol 84:7396–7404

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Sanchez-Martinez S, Aloia AL, Harvin D, Mirro J, Gorelick RJ, Jern P, Coffin JM, Rein A (2012) Studies on the restriction of murine leukemia viruses by mouse APOBEC3. PLoS One 7:e38190

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Zennou V, Bieniasz PD (2006) Comparative analysis of the antiretroviral activity of APOBEC3G and APOBEC3F from primates. Virology 349:31–40

    Article  CAS  PubMed  Google Scholar 

  28. Bogerd HP, Zhang F, Bieniasz PD, Cullen BR (2011) Human APOBEC3 proteins can inhibit xenotropic murine leukemia virus-related virus infectivity. Virology 410:234–239

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Adachi A, Gendelman HE, Koenig S, Folks T, Willey R, Rabson A, Martin MA (1986) Production of acquired immunodeficiency syndrome-associated retrovirus in human and nonhuman cells transfected with an infectious molecular clone. J Virol 59:284–291

    CAS  PubMed Central  PubMed  Google Scholar 

  30. Kao S, Khan MA, Miyagi E, Plishka R, Buckler-White A, Strebel K (2003) The human immunodeficiency virus type 1 Vif protein reduces intracellular expression and inhibits packaging of APOBEC3G (CEM15), a cellular inhibitor of virus infectivity. J Virol 77:11398–11407

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Miyagi E, Opi S, Takeuchi H, Khan M, Goila-Gaur R, Kao S, Strebel K (2007) Enzymatically active APOBEC3G is required for efficient inhibition of human immunodeficiency virus type 1. J Virol 81:13346–13353

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Xu H, Chertova E, Chen J, Ott DE, Roser JD, Hu WS, Pathak VK (2007) Stoichiometry of the antiviral protein APOBEC3G in HIV-1 virions. Virology 360:247–256

    Article  CAS  PubMed  Google Scholar 

  33. Dieckhoff B, Kessler B, Jobst D, Kues W, Petersen B, Pfeifer A, Kurth R, Niemann H, Wolf E, Denner J (2009) Distribution and expression of porcine endogenous retroviruses in multi-transgenic pigs generated for xenotransplantation. Xenotransplantation 16:64–73

    Article  PubMed  Google Scholar 

  34. Kaulitz D, Mihica D, Dorna J, Costa MR, Petersen B, Niemann H, Tönjes RR, Denner J (2011) Development of sensitive methods for detection of porcine endogenous retrovirus-C (PERV-C) in the genome of pigs. J Virol Methods 175:60–65

    Article  CAS  PubMed  Google Scholar 

  35. Browne EP, Littman DR (2008) Species-specific restriction of apobec3-mediated hypermutation. J Virol 82:1305–1313

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Mariani R, Chen D, Schröfelbauer B, Navarro F, König R, Bollman B, Münk C, Nymark-McMahon H, Landau NR (2003) Species-specific exclusion of APOBEC3G from HIV-1 virions by Vif. Cell 114:21–31

    Article  CAS  PubMed  Google Scholar 

  37. Miyagi E, Brown CR, Opi S, Khan M, Goila-Gaur R, Kao S, Walker RC Jr, Hirsch V, Strebel K (2010) Stably expressed APOBEC3F has negligible antiviral activity. J Virol 84:11067–11075

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Education, Science and Technology (2010-0024912).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Tae Jung.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, SH., Kim, J.H. & Jung, YT. Differential sensitivity of porcine endogenous retrovirus to APOBEC3-mediated inhibition. Arch Virol 160, 1901–1908 (2015). https://doi.org/10.1007/s00705-015-2450-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-015-2450-y

Keywords

Navigation