Skip to main content

Advertisement

Log in

Prediction of signaling pathways involved in enterovirus 71 infection by algorithm analysis based on miRNA profiles and their target genes

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Enterovirus 71 (EV71) causes major outbreaks of hand, foot, and mouth disease. Host factors and signaling pathways exhibit important functions in the EV71 life cycle. We conducted algorithm analysis based on miRNA profiles and their target genes to identify the miRNAs and downstream signaling pathways involved in EV71 infection. The miRNA profiles of human rhabdomyosarcoma cells treated with interferon (IFN-)-α or IFN-γ were compared with those of cells infected with EV71. Genes targeted by differentially expressed miRNAs were identified and assigned to different signaling pathways according to public databases. The results showed that host miRNAs specifically responded to the viral infection and IFN treatment. Some miRNAs, including miR-124 and miR-491-3p, were regulated in opposite manners by the IFNs and EV71. Some signaling pathways regulated by both EV71 infection and IFN treatment were also predicted. These pathways included axon guidance, Wingless/Int1 (Wnt) signaling cascade, platelet-derived growth factor receptor (PDGFR)/PDGF, phosphatidylinositol 3-kinase (PI3K), Jun N-terminal kinase (JNK)/mitogen-activated protein kinase (MAPK), transforming growth factor-beta receptor (TGF-βR)/TGF-β, SMAD2/3, insulin/insulin-like growth factor (IGF), bone morphogenetic protein (BMP), CDC42, ERB1, hepatocyte growth factor receptor (c-Met), eukaryotic translation initiation factor 4E (eIF4E), protein kinase A (PKA), and IFN-γ pathways. The identified miRNA and downstream signaling pathways would help to elucidate the interaction between the virus and the host. The genomics method using algorithm analysis also provided a new way to investigate the host factors and signaling pathways critical for viral replication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Solomon T, Lewthwaite P, Perera D, Cardosa MJ, McMinn P, Ooi MH (2010) Virology, epidemiology, pathogenesis, and control of enterovirus 71. Lancet Infect Dis 10:778–790

    Article  PubMed  Google Scholar 

  2. Ooi MH, Wong SC, Lewthwaite P, Cardosa MJ, Solomon T (2010) Clinical features, diagnosis, and management of enterovirus 71. Lancet Neurol 9:1097–1105

    Article  PubMed  Google Scholar 

  3. Yi L, Lu J, Kung HF, He ML (2011) The virology and developments toward control of human enterovirus 71. Crit Rev Microbiol 37:313–327

    Article  CAS  PubMed  Google Scholar 

  4. Guan D, van der Sanden S, Zeng H, Li W, Zheng H, Ma C, Su J, Liu Z, Guo X, Zhang X, Liu L, Koopmans M, Ke C (2012) Population dynamics and genetic diversity of C4 strains of human enterovirus 71 in Mainland China, 1998–2010. PLoS One 7:e44386

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Zhang Y, Tan X, Cui A, Mao N, Xu S, Zhu Z, Zhou J, Shi J, Zhao Y, Wang X, Huang X, Zhu S, Zhang Y, Tang W, Ling H, Xu W (2013) Complete genome analysis of the C4 subgenotype strains of enterovirus 71: predominant recombination C4 viruses persistently circulating in China for 14 years. PLoS One 8:e56341

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Lee MS, Chang LY (2010) Development of enterovirus 71 vaccines. Expert Rev Vaccines 9:149–156

    Article  CAS  PubMed  Google Scholar 

  7. Wu KX, Ng MM, Chu JJ (2010) Developments towards antiviral therapies against enterovirus 71. Drug Discov Today 15:1041–1051

    Article  CAS  PubMed  Google Scholar 

  8. Weng KF, Chen LL, Huang PN, Shih SR (2010) Neural pathogenesis of enterovirus 71 infection. Microbes Infect 12:505–510

    Article  CAS  PubMed  Google Scholar 

  9. Chen LC, Shyu HW, Chen SH, Lei HY, Yu CK, Yeh TM (2006) Enterovirus 71 infection induces Fas ligand expression and apoptosis of Jurkat cells. J Med Virol 78:780–786

    Article  CAS  PubMed  Google Scholar 

  10. Chen TC, Lai YK, Yu CK, Juang JL (2007) Enterovirus 71 triggering of neuronal apoptosis through activation of Abl-Cdk5 signalling. Cell Microbiol 9:2676–2688

    Article  CAS  PubMed  Google Scholar 

  11. Tung WH, Hsieh HL, Lee IT, Yang CM (2011) Enterovirus 71 modulates a COX-2/PGE2/cAMP-dependent viral replication in human neuroblastoma cells: role of the c-Src/EGFR/p42/p44 MAPK/CREB signaling pathway. J Cell Biochem 112:559–570

    Article  CAS  PubMed  Google Scholar 

  12. Tung WH, Hsieh HL, Yang CM (2010) Enterovirus 71 induces COX-2 expression via MAPKs, NF-kappaB, and AP-1 in SK-N-SH cells: Role of PGE(2) in viral replication. Cell Signal 22:234–246

    Article  CAS  PubMed  Google Scholar 

  13. Tung WH, Lee IT, Hsieh HL, Yang CM (2010) EV71 induces COX-2 expression via c-Src/PDGFR/PI3K/Akt/p42/p44 MAPK/AP-1 and NF-kappaB in rat brain astrocytes. J Cell Physiol 224:376–386

    Article  CAS  PubMed  Google Scholar 

  14. Tung WH, Sun CC, Hsieh HL, Wang SW, Horng JT, Yang CM (2007) EV71 induces VCAM-1 expression via PDGF receptor, PI3-K/Akt, p38 MAPK, JNK and NF-kappaB in vascular smooth muscle cells. Cell Signal 19:2127–2137

    Article  CAS  PubMed  Google Scholar 

  15. Wang B, Zhang H, Zhu M, Luo Z, Peng Y (2012) MEK1-ERKs signal cascade is required for the replication of Enterovirus 71 (EV71). Antiviral Res 93:110–117

    Article  CAS  PubMed  Google Scholar 

  16. Wong WR, Chen YY, Yang SM, Chen YL, Horng JT (2005) Phosphorylation of PI3K/Akt and MAPK/ERK in an early entry step of enterovirus 71. Life Sci 78:82–90

    Article  CAS  PubMed  Google Scholar 

  17. Zheng Z, Li H, Zhang Z, Meng J, Mao D, Bai B, Lu B, Mao P, Hu Q, Wang H (2011) Enterovirus 71 2C protein inhibits TNF-alpha-mediated activation of NF-kappaB by suppressing IkappaB kinase beta phosphorylation. J Immunol 187:2202–2212

    Article  CAS  PubMed  Google Scholar 

  18. Lee JJ, Seah JB, Chow VT, Poh CL, Tan EL (2011) Comparative proteome analyses of host protein expression in response to Enterovirus 71 and Coxsackievirus A16 infections. J Proteomics 74:2018–2024

    Article  CAS  PubMed  Google Scholar 

  19. Leong PW, Liew K, Lim W, Chow VT (2002) Differential display RT-PCR analysis of enterovirus-71-infected rhabdomyosarcoma cells reveals mRNA expression responses of multiple human genes with known and novel functions. Virology 295:147–159

    Article  CAS  PubMed  Google Scholar 

  20. Leong WF, Chow VT (2006) Transcriptomic and proteomic analyses of rhabdomyosarcoma cells reveal differential cellular gene expression in response to enterovirus 71 infection. Cell Microbiol 8:565–580

    Article  CAS  PubMed  Google Scholar 

  21. Shih SR, Stollar V, Lin JY, Chang SC, Chen GW, Li ML (2004) Identification of genes involved in the host response to enterovirus 71 infection. J Neurovirol 10:293–304

    Article  CAS  PubMed  Google Scholar 

  22. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Skalsky RL, Cullen BR (2010) Viruses, microRNAs, and host interactions. Annu Rev Microbiol 64:123–141

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Ho BC, Yu SL, Chen JJ, Chang SY, Yan BS, Hong QS, Singh S, Kao CL, Chen HY, Su KY, Li KC, Cheng CL, Cheng HW, Lee JY, Lee CN, Yang PC (2011) Enterovirus-induced miR-141 contributes to shutoff of host protein translation by targeting the translation initiation factor eIF4E. Cell Host Microbe 9:58–69

    Article  CAS  PubMed  Google Scholar 

  25. Ho BC, Yu IS, Lu LF, Rudensky A, Chen HY, Tsai CW, Chang YL, Wu CT, Chang LY, Shih SR, Lin SW, Lee CN, Yang PC, Yu SL (2014) Inhibition of miR-146a prevents enterovirus-induced death by restoring the production of type I interferon. Nat Commun 5:3344

    PubMed  Google Scholar 

  26. Lui YL, Tan TL, Woo WH, Timms P, Hafner LM, Tan KH, Tan EL (2014) Enterovirus71 (EV71) utilize host microRNAs to mediate host immune system enhancing survival during infection. PLoS One 9:e102997

    Article  PubMed Central  PubMed  Google Scholar 

  27. Wen BP, Dai HJ, Yang YH, Zhuang Y, Sheng R (2013) MicroRNA-23b inhibits enterovirus 71 replication through downregulation of EV71 VP1 protein. Intervirology 56:195–200

    Article  CAS  PubMed  Google Scholar 

  28. Zheng Z, Ke X, Wang M, He S, Li Q, Zheng C, Zhang Z, Liu Y, Wang H (2013) Human microRNA hsa-miR-296-5p suppresses enterovirus 71 replication by targeting the viral genome. J Virol 87:5645–5656

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Li Y, Xie J, Xu X, Wang J, Ao F, Wan Y, Zhu Y (2013) MicroRNA-548 down-regulates host antiviral response via direct targeting of IFN-λ1. Protein Cell 4:130–141

    Article  CAS  PubMed  Google Scholar 

  30. Cui L, Qi Y, Li H, Ge Y, Zhao K, Qi X, Guo X, Shi Z, Zhou M, Zhu B, Guo Y, Li J, Stratton CW, Tang YW, Wang H (2011) Serum microRNA expression profile distinguishes enterovirus 71 and coxsackievirus 16 infections in patients with hand-foot-and-mouth disease. PLoS One 6:e27071

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Hung HC, Wang HC, Shih SR, Teng IF, Tseng CP, Hsu JT (2011) Synergistic inhibition of enterovirus 71 replication by interferon and rupintrivir. J Infect Dis 203:1784–1790

    Article  CAS  PubMed  Google Scholar 

  32. Liu ML, Lee YP, Wang YF, Lei HY, Liu CC, Wang SM, Su IJ, Wang JR, Yeh TM, Chen SH, Yu CK (2005) Type I interferons protect mice against enterovirus 71 infection. J Gen Virol 86:3263–3269

    Article  CAS  PubMed  Google Scholar 

  33. Yi L, He Y, Chen Y, Kung HF, He ML (2011) Potent inhibition of human enterovirus 71 replication by type I interferon subtypes. Antivir Ther 16:51–58

    Article  CAS  PubMed  Google Scholar 

  34. Lu J, Yi L, Zhao J, Yu J, Chen Y, Lin MC, Kung HF, He ML (2012) Enterovirus 71 disrupts interferon signaling by reducing the level of interferon receptor 1. J Virol 86:3767–3776

    Article  PubMed Central  PubMed  Google Scholar 

  35. Lei X, Liu X, Ma Y, Sun Z, Yang Y, Jin Q, He B, Wang J (2010) The 3C protein of enterovirus 71 inhibits retinoid acid-inducible gene I-mediated interferon regulatory factor 3 activation and type I interferon responses. J Virol 84:8051–8061

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Wang B, Xi X, Lei X, Zhang X, Cui S, Wang J, Jin Q, Zhao Z (2013) Enterovirus 71 protease 2Apro targets MAVS to inhibit anti-viral type I interferon responses. PLoS Pathog 9:e1003231

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Yan XF, Gao S, Xia JF, Ye R, Yu H, Long JE (2012) Epidemic characteristics of hand, foot, and mouth disease in Shanghai from 2009 to 2010: enterovirus 71 subgenotype C4 as the primary causative agent and a high incidence of mixed infections with coxsackievirus A16. Scand J Infect Dis 44:297–305

    Article  PubMed  Google Scholar 

  38. Wan G, Lim QE, Too HP (2010) High-performance quantification of mature microRNAs by real-time RT-PCR using deoxyuridine-incorporated oligonucleotides and hemi-nested primers. RNA 16:1436–1445

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Kaimal V, Bardes EE, Tabar SC, Jegga AG, Aronow BJ (2010) ToppCluster: a multiple gene list feature analyzer for comparative enrichment clustering and network-based dissection of biological systems. Nucleic Acids Res 38:W96–W102

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. David M (2010) Interferons and microRNAs. J Interferon Cytokine Res 30:825–828

    Article  CAS  PubMed  Google Scholar 

  41. Henke JI, Goergen D, Zheng J, Song Y, Schuttler CG, Fehr C, Junemann C, Niepmann M (2008) MicroRNA-122 stimulates translation of hepatitis C virus RNA. EMBO J 27:3300–3310

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Gatto G, Rossi A, Rossi D, Kroening S, Bonatti S, Mallardo M (2008) Epstein-Barr virus latent membrane protein 1 trans-activates miR-155 transcription through the NF-kappaB pathway. Nucleic Acids Res 36:6608–6619

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Lecellier CH, Dunoyer P, Arar K, Lehmann-Che J, Eyquem S, Himber C, Saib A, Voinnet O (2005) A cellular microRNA mediates antiviral defense in human cells. Science 308:557–560

    Article  CAS  PubMed  Google Scholar 

  44. Sonntag KC, Woo TU, Krichevsky AM (2012) Converging miRNA functions in diverse brain disorders: a case for miR-124 and miR-126. Exp Neuro. 235:427–435

    Article  CAS  Google Scholar 

  45. Xue Y, Ouyang K, Huang J, Zhou Y, Ouyang H, Li H, Wang G, Wu Q, Wei C, Bi Y, Jiang L, Cai Z, Sun H, Zhang K, Zhang Y, Chen J, Fu XD (2013) Direct conversion of fibroblasts to neurons by reprogramming PTB-regulated microRNA circuits. Cell 152:82–96

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Yoo AS, Sun AX, Li L, Shcheglovitov A, Portmann T, Li Y, Lee-Messer C, Dolmetsch RE, Tsien RW, Crabtree GR (2011) MicroRNA-mediated conversion of human fibroblasts to neurons. Nature 476:228–231

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, Sweet-Cordero A, Ebert BL, Mak RH, Ferrando AA, Downing JR, Jacks T, Horvitz HR, Golub TR (2005) MicroRNA expression profiles classify human cancers. Nature 435:834–838

    Article  CAS  PubMed  Google Scholar 

  48. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  CAS  PubMed  Google Scholar 

  49. Lagos-Quintana M, Rauhut R, Yalcin A, Meyer J, Lendeckel W, Tuschl T (2002) Identification of tissue-specific microRNAs from mouse. Curr Biol 12:735–739

    Article  CAS  PubMed  Google Scholar 

  50. Xu LJ, Jiang T, Zhao W, Han JF, Liu J, Deng YQ, Zhu SY, Li YX, Nian QG, Zhang Y, Wu XY, Qin ED, Qin CF (2014) Parallel mRNA and microRNA profiling of HEV71-infected human neuroblastoma cells reveal the up-regulation of miR-1246 in association with DLG3 repression. PLoS One 9:e95272

    Article  PubMed Central  PubMed  Google Scholar 

  51. Cui L, Guo X, Qi Y, Qi X, Ge Y, Shi Z, Wu T, Shan J, Shan Y, Zhu Z, Wang H (2010) Identification of microRNAs involved in the host response to enterovirus 71 infection by a deep sequencing approach. J Biomed Biotechnol 2010:425939

    PubMed Central  PubMed  Google Scholar 

  52. Bonjardim CA, Ferreira PC, Kroon EG (2009) Interferons: signaling, antiviral and viral evasion. Immunol Lett 122:1–11

    Article  CAS  PubMed  Google Scholar 

  53. Colonna M (2007) TLR pathways and IFN-regulatory factors: to each its own. Eur J Immunol 37:306–309

    Article  CAS  PubMed  Google Scholar 

  54. Belgnaoui SM, Paz S, Hiscott J (2011) Orchestrating the interferon antiviral response through the mitochondrial antiviral signaling (MAVS) adapter. Curr Opin Immunol 23:564–572

    Article  CAS  PubMed  Google Scholar 

  55. Leung DW, Basler CF, Amarasinghe GK (2012) Molecular mechanisms of viral inhibitors of RIG-I-like receptors. Trends Microbiol 20:139–146

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Elices MJ, Osborn L, Takada Y, Crouse C, Luhowskyj S, Hemler ME, Lobb RR (1990) VCAM-1 on activated endothelium interacts with the leukocyte integrin VLA-4 at a site distinct from the VLA-4/fibronectin binding site. Cell 60:577–584

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Prof. Shuping Tong for numerous revisions and critical comments on the manuscript. This work was supported by the National Science and Technology Major Project on Infectious Diseases (Grant No. 2012ZX10004503-003) and the Shanghai Science and Technology Fund (Grant No. 09411964500).

Conflict of interest

The authors declare no conflict of interest with respect to this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Er Long.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bian, L., Wang, Y., Liu, Q. et al. Prediction of signaling pathways involved in enterovirus 71 infection by algorithm analysis based on miRNA profiles and their target genes. Arch Virol 160, 173–182 (2015). https://doi.org/10.1007/s00705-014-2249-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-014-2249-2

Keywords

Navigation