Skip to main content

Advertisement

Log in

An update on viral association of human cancers

  • Brief Review
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Up to now, seven viruses that infect humans have been identified as oncogenic and are closely associated with different human cancers. Most of them encode oncogenes whose products play important roles in the development of cancers in the context of environmental and genetic factors; others may act via indirect mechanisms. The transforming activities of the human oncogenic viruses have much in common with the well-studied tumorigenic processes elicited by the acutely transforming murine retroviruses. Many of these mechanisms have been elucidated for or are represented in the successive steps leading to the efficient in vitro immortalization by the lymphotropic herpesvirus Epstein-Barr virus, although the establishment of malignancy in vivo takes longer. The development of cancer is a complicated process involving multiple factors, from the host and the environment. Although any one of these etiologic factors may exert an effect on the carcinogenic process, vaccination against the viral pathogen in several cases has shown efficacy in preventing the spread of the virus and, in turn, the development of the associated cancers. Modern laboratory techniques can be expected to facilitate the identification of new emerging viruses whose association with malignancies is suggested by epidemiologic and clinical data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Chang Y, Cesarman E, Pessin MS, Lee F, Culpepper J, Knowles DM, Moore PS (1994) Identification of herpesvirus-like DNA sequences in AIDS-associated Kaposi’s sarcoma. Science 266:1865–1869

    Article  PubMed  CAS  Google Scholar 

  2. Schalling M, Ekman M, Kaaya EE, Linde A, Biberfeld P (1995) A role for a new herpes virus (KSHV) in different forms of Kaposi’s sarcoma. Nat Med 1:707–708

    Article  PubMed  CAS  Google Scholar 

  3. Cesarman E, Chang Y, Moore PS, Said JW, Knowles DM (1995) Kaposi’s sarcoma-associated herpesvirus-like DNA sequences in AIDS-related body-cavity-based lymphomas. N Engl J Med 332:1186–1191

    Article  PubMed  CAS  Google Scholar 

  4. Feng H, Shuda M, Chang Y, Moore PS (2008) Clonal integration of a polyomavirus in human merkel cell carcinoma. Science 319:1096–1100

    Article  PubMed  CAS  Google Scholar 

  5. Rous P (1911) A Sarcoma of the fowl transmissible by an agent separable from the tumor cells. J Exp Med 13:397–411

    Article  PubMed  CAS  Google Scholar 

  6. Zheng ZM (2010) Viral oncogenes, noncoding RNAs, and RNA splicing in human tumor viruses. Int J Biol Sci 6:730–755

    Article  PubMed  CAS  Google Scholar 

  7. Stolt A, Sasnauskas K, Koskela P, Lehtinen M, Dillner J (2003) Seroepidemiology of the human polyomaviruses. J Gen Virol 84:1499–1504

    Article  PubMed  CAS  Google Scholar 

  8. Barbanti-Brodano G, Sabbioni S, Martini F, Negrini M, Corallini A, Tognon M (2006) BK virus, JC virus and Simian Virus 40 infection in humans, and association with human tumors. Adv Exp Med Biol 577:319–341

    Article  PubMed  CAS  Google Scholar 

  9. zur Hausen H (2008) Novel human polyomaviruses—Re-emergence of a well known virus family as possible human carcinogens. Int J Cancer 123:247–250

    Article  PubMed  CAS  Google Scholar 

  10. Allander T, Andreasson K, Gupta S, Bjerkner A, Bogdanovic G, Persson MAA, Dalianis T, Ramqvist T, Andersson B (2007) Identification of a third human polyomavirus. J Virol 81:4130–4136

    Article  PubMed  CAS  Google Scholar 

  11. Gaynor AM, Nissen MD, Whiley DM, Mackay IM, Lambert SB et al (2007) Identification of a novel polyomavirus from patients with acute respiratory tract infections. Plos Pathog 3:595–604

    Article  CAS  Google Scholar 

  12. Helmbold P, Lahtz C, Enk A, Herrmann-Trost P, Marsch WCh, Kutzner H, Dammann RH (2009) Frequent occurrence of RASSF1A promoter hypermethylation and Merkel cell polyomavirus in Merkel cell carcinoma. Mol Carcinog 48:903–909

    Article  PubMed  CAS  Google Scholar 

  13. Sastre-Garau X, Peter M, Avril MF, Laude H, Couturier J, Rozenberg F, Almeida A, Boitier F, Carlotti A, Couturaud B, Dupin N (2009) Merkel cell carcinoma of the skin: pathological and molecular evidence for a causative role of MCV in oncogenesis. J Pathol 218:48–56

    Article  PubMed  CAS  Google Scholar 

  14. de Villiers EM, Fauquet C, Broker TR, Bernard HU, zur Hausen H (2004) Classification of papillomaviruses. Virology 324:17–27

    Article  PubMed  Google Scholar 

  15. Michels KB, Zur Hausen H (2009) HPV vaccine for all. Lancet 374:268–270

    Article  PubMed  Google Scholar 

  16. National Notifiable Disease Surveillance Sytem–CDC. Available from: http://www.cdc.gov/osels/ph_surveillance/nndss/nndsshis.htm. Accessed on 04.9.2012

  17. Lo EJ, Bell D, Woo JS, Li G, Hanna EY, El-Naggar AK, Sturgis EM (2010) Human papillomavirus and WHO type I nasopharyngeal carcinoma. Laryngoscope 120:1990–1997

    Article  PubMed  Google Scholar 

  18. Laantri N, Attaleb M, Kandil M, Naji F, Mouttaki T, Dardari R, Belghmi K, Benchakroun N, El Mzibri M, Khyatti M (2011) Human papillomavirus detection in moroccan patients with nasopharyngeal carcinoma. Infect Agent Cancer 6:3

    Article  PubMed  Google Scholar 

  19. Huang CC, Hsiao JR, Yang MW, Wu YH, Hsu KF, Chang Y, Chen CW, Tsai ST, Wei HP, Jin YT (2011) Human papilloma virus detection in neoplastic and non-neoplastic nasopharyngeal tissues in Taiwan. J Clin Pathol 64:571–577

    Article  PubMed  Google Scholar 

  20. Chen TH, Huang CC, Yeh KT, Chang SH, Chang SW, Sung WW, Cheng YW, Lee H (2012) Human papilloma virus 16 E6 oncoprotein associated with p53 inactivation in colorectal cancer. World J Gastroenterol 18:4051–4058

    Article  PubMed  CAS  Google Scholar 

  21. Vousden KH, Jat PS (1989) Functional similarity between HPV16E7, SV40 large T and adenovirus E1a proteins. Oncogene 4:153–158

    PubMed  CAS  Google Scholar 

  22. Liu X, Clements A, Zhao K, Marmorstein R (2006) Structure of the human papillomavirus E7 oncoprotein and its mechanism for inactivation of the retinoblastoma tumor suppressor. J Biol Chem 281:578–586

    Article  PubMed  CAS  Google Scholar 

  23. Morris EJ, Dyson NJ (2001) Retinoblastoma protein partners. Adv Cancer Res 82:1–54

    Article  PubMed  CAS  Google Scholar 

  24. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D (2011) Global cancer statistics. CA Cancer J Clin 61:69–90

    Article  PubMed  Google Scholar 

  25. Perz JF, Armstrong GL, Farrington LA et al (2006) The contributions of hepatitis B virus and hepatitis C virus infections to cirrhosis and primary liver cancer worldwide. J Hepatol 45:529–538

    Article  PubMed  Google Scholar 

  26. Bouchard MJ, Schneider RJ (2004) The enigmatic X gene of hepatitis B virus. J Virol 78:12725–12734

    Article  PubMed  CAS  Google Scholar 

  27. Yen CJ, Lin YJ, Yen CS, Tsai HW, Tsai TF, Chang KY, Huang WC, Lin PW, Chiang CW, Chang TT (2012) Hepatitis B Virus X Protein Upregulates mTOR signaling through IKKβ to increase cell proliferation and VEGF production in hepatocellular carcinoma. PLoS One 7(7):e41931

    Article  PubMed  CAS  Google Scholar 

  28. Diao J, Garces R, Richardson CD (2001) X protein of hepatitis B virus modulates Cytokine and growth factor related signal transduction pathways during the course of viral infections and hepatocarcinogenesis. Cytokine Growth Factor Rev 12:189–205

    Article  PubMed  CAS  Google Scholar 

  29. Kuzhandaivelu N, Cong YS, Inouye C, Yang WM, Seto E (1996) XAP2, a novel hepatitis B virus X-associated protein that inhibits X transactivation. Nucleic Acids Res 24:4741–4750

    Article  PubMed  CAS  Google Scholar 

  30. Kashuba E, Kashuba V, Pokrovskaja K, Klein G, Szekely L (2000) Epstein–Barr virus encoded nuclear protein EBNA-3 binds XAP-2, a protein associated with Hepatitis B virus X antigen. Oncogene 19:1801–1806

    Article  PubMed  CAS  Google Scholar 

  31. Liu J, Lian Z, Han S et al (2006) De-regulation of E-Cadherin by hepatitis B virus × antigen in hepatocellular carcinoma. Oncogene 16:1008–1017

    Article  Google Scholar 

  32. Zhang X, Dong N, Zhang H et al (2005) Effects of hepatitis B virus X protein on human telomerase reverse transcriptase expression and activity in hepatoma cells. J Lab Clin Med 145:96–104

    Article  Google Scholar 

  33. Poussin K, Dienes H, Sirma H et al (1999) Expression of mutated Hepatitis B virus X genes in human hepatocellular carcinomas. Int J Cancer 192:111–118

    Google Scholar 

  34. Wang Y, Lau SH, Sham JST et al (2004) Characterization of HBV integrants in 14 hepatocellular carcinomas: association of truncated x gene and hepatocellular carcinogenesis. Oncogene 23:142–148

    Article  PubMed  CAS  Google Scholar 

  35. Sze KM, Chu GK, Lee JM, Ng IO (2012) C-terminal truncated hepatitis B virus x protein is associated with metastasis and enhances invasiveness by c-jun/matrix metalloproteinase protein 10 activation in hepatocellular carcinoma. Hepatology 57:131–139

    Google Scholar 

  36. Wang C, Yang W, Yan HX, Luo T, Zhang J, Tang L, Wu FQ, Zhang HL, Yu LX, Zheng LY, Li YQ, Dong W, He YQ, Liu Q, Zou SS, Lin Y, Hu L, Li Z, Wu MC, Wang HY (2012) Hepatitis B virus X (HBx) induces tumorigenicity of hepatic progenitor cells in 3,5-diethoxycarbonyl-1,4-dihydrocollidine-treated HBx transgenic mice. Hepatology 55:108–120

    Article  PubMed  CAS  Google Scholar 

  37. Liang TJ, Heller T (2004) Pathogenesis of hepatitis C-associated hepatocellular carcinoma. Gastroenterology 127:S62–S71

    Article  PubMed  CAS  Google Scholar 

  38. Jopling CL, Yi M, Lancaster AM et al (2005) Modulation of hepatitis C virus RNA abundance by a liver-specific MicroRNA. Science 309:1577–1581

    Article  PubMed  CAS  Google Scholar 

  39. Zhong J, Gastaminza P, Chung J, Stamataki Z, Isogawa M, Cheng G, McKeating JA, Chisari FV (2006) Persistent hepatitis C virus infection in vitro: coevolution of virus and host. J. Virol. 80:11082–11093

    Article  PubMed  CAS  Google Scholar 

  40. Ambros V (2004) The functions of animal microRNAs. Nature 431:350–355

    Article  PubMed  CAS  Google Scholar 

  41. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  PubMed  CAS  Google Scholar 

  42. Samols MA, Renne R (2006) Virus-encoded microRNAs: a new chapter in virus-host cell interaction. Future Virol 1:233–242

    Article  CAS  Google Scholar 

  43. Sullivan CS, Ganem D (2005) MicroRNAs and viral infection. Mol Cell 20:3

    Article  PubMed  CAS  Google Scholar 

  44. Cai X, Schafer A, Lu S, Bilello JP, Desrosiers RC, Edwards R, Raab-Traub N, Cullen BR (2006) Epstein–Barr virus microRNAs are evolutionarily conserved and differentially expressed. PLoS Pathog 2:e23

    Article  PubMed  Google Scholar 

  45. Grundhoff A, Sullivan CS, Ganem D (2006) A combined computational and microarray-based approach identifies novel microRNAs encoded by human gamma-herpesviruses. RNA 12:733–750

    Article  PubMed  CAS  Google Scholar 

  46. Pfeffer S, Zavolan M, Grasser FA, Chien M, Russo JJ, Ju J, John B, Enright AJ, Marks D, Sander C, Tuschl T (2004) Identification of virus-encoded microRNAs. Science 304:734–736

    Article  PubMed  CAS  Google Scholar 

  47. Cai X, Lu S, Zhang Z, Gonzalez CM, Damania B, Cullen BR (2005) Kaposi’s sarcoma-associated herpesvirus expresses an array of viral microRNAs in latently infected cells. Proc Natl Acad Sci USA 102:5570–5575

    Article  PubMed  CAS  Google Scholar 

  48. Pfeffer S, Sewer A, Lagos-Quintana M, Sheridan R, Sander C, Grasser FA, van Dyk LF, Ho CK, Shuman S, Chien M, Russo JJ, Ju J, Randall G, Lindenbach BD, Rice CM, Simon V, Ho DD, Zavolan M, Tuschl T (2005) Identification of microRNAs of the herpesvirus family. Nat Methods 2:269–276

    Article  PubMed  CAS  Google Scholar 

  49. Samols MA, Hu J, Skalsky RL, Renne R (2005) Cloning and identification of a microRNA cluster within the latency-associated region of Kaposi’s sarcoma-associated herpesvirus. J Virol 79:9301–9305

    Article  PubMed  CAS  Google Scholar 

  50. Cai X, Hagedorn CH, Cullen BR (2004) Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA 10:1957–1966

    Article  PubMed  CAS  Google Scholar 

  51. Denli AM, Tops BB, Plasterk RH, Ketting RF, Hannon GJ (2004) Processing of primary microRNAs by the Microprocessor complex. Nature 432:231–235

    Article  PubMed  CAS  Google Scholar 

  52. Gregory RI, Yan KP, Amuthan G, Chendrimada T, Doratotaj B, Cooch N et al (2004) The Microprocessor complex mediates the genesis of microRNAs. Nature 432:235–240

    Article  PubMed  CAS  Google Scholar 

  53. Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J et al (2003) The nuclear RNase III Drosha initiates microRNA processing. Nature 425:415–419

    Article  PubMed  CAS  Google Scholar 

  54. Han J, Lee Y, Yeom KH, Nam JW, Heo I, Rhee JK et al (2006) Molecular basis for the recognition of primary microRNAs by the Drosha-DGCR8 complex. Cell 125:887–901

    Article  PubMed  CAS  Google Scholar 

  55. Lund E, Guttinger S, Calado A, Dahlberg JE, Kutay U (2004) Nuclear export of microRNA precursors. Science 303:95–98

    Article  PubMed  CAS  Google Scholar 

  56. Hutvagner G, McLachlan J, Pasquinelli AE, Balint E, Tuschl T, Zamore PD (2001) A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science 293:834–838

    Article  PubMed  CAS  Google Scholar 

  57. Salzman DW, Shubert-Coleman J, Furneaux H (2007) P68 RNA helicase unwinds the human let-7 microRNA precursor duplex and is required for let-7-directed silencing of gene expression. J Biol Chem 282:32773–32779

    Article  PubMed  CAS  Google Scholar 

  58. Khvorova A, Reynolds A, Jayasena SD (2003) Functional siRNAs and miRNAs exhibit strand bias. Cell 115:209–216

    Article  PubMed  CAS  Google Scholar 

  59. Schwarz DS, Hutvagner G, Du T, Xu Z, Aronin N, Zamore PD (2003) Asymmetry in the assembly of the RNAi enzyme complex. Cell 115:199–208

    Article  PubMed  CAS  Google Scholar 

  60. Skalsky RL, Samols MA, Karlie B, Plaisance KB, Boss IW, Riva A, Lopez MC, Baker HV, Renne R (2007) Kaposi’s Sarcoma-Associated Herpesvirus Encodes an Ortholog of miR-155. J Virol 81:12836–12845

    Article  PubMed  CAS  Google Scholar 

  61. Louafi F, Martinez-Nunez RT, Sanchez-Elsner T (2010) MicroRNA-155 targets SMAD2and modulates the response of macrophages to transforming growth factor-{beta}. J Biol Chem 285:41328–41336

    Article  PubMed  CAS  Google Scholar 

  62. Rai D, Kim SW, McKeller MR, Dahia PL, Aguiar RC (2010) Targeting of SMAD5 links microRNA-155 to the TGF-beta pathway and lymphomagenesis. Proc Natl Acad Sci USA 107:3111–3116

    Article  PubMed  CAS  Google Scholar 

  63. Yin Q et al (2008) MicroRNA-155 is an Epstein–Barr virus-induced gene that modulates Epstein–Barr virus-regulated gene expression pathways. J Virol 82:5295–5306

    Article  PubMed  CAS  Google Scholar 

  64. Yin Q et al (2010) MicroRNA miR-155 inhibits bone morphogenetic protein (BMP) signaling and BMP-mediated Epstein–Barr virus reactivation. J Virol 84:6318–6327

    Article  PubMed  CAS  Google Scholar 

  65. Liu Y et al (2012) Kaposi’s Sarcoma-Associated Herpesvirus-Encoded MicroRNA miR-K12-11 Attenuates Transforming Growth Factor Beta Signaling through Suppression of SMAD5. J Virol 86:1372

    Article  PubMed  CAS  Google Scholar 

  66. Cahir-McFarland ED, Davidson DM, Schauer SL, Duong J, Kieff E (2000) NF-kappa B inhibition causes spontaneous apoptosis in Epstein–Barr virus-transformed lymphoblastoid cells. Proc Natl Acad Sci USA 97:6055–6060

    Article  PubMed  CAS  Google Scholar 

  67. Allday MJ (2009) How does Epstein–Barr virus (EBV) complement the activation of Myc in the pathogenesis of Burkitt’s lymphoma? Semin Cancer Biol 19:366–376

    Article  PubMed  CAS  Google Scholar 

  68. Lo KW, To KF, Huang DP (2004) Focus on nasopharyngeal carcinoma. Cancer Cell 5:423–428

    Article  PubMed  CAS  Google Scholar 

  69. Chen J, Fu L, Zhang LY, Kwong DL, Yan L, Guan XY (2012) Tumor suppressor genes on frequently deleted chromosome 3p in nasopharyngeal carcinoma. Chin J Cancer 31:215–222

    Article  PubMed  CAS  Google Scholar 

  70. Lo KW, Kwong J, Hui AB, Chan SY, To KF, Chan AS, Chow LS, Teo PM, Johnson PJ, Huang DP (2001) High frequency of promoter hypermethylation of RASSF1A in nasopharyngeal carcinoma. Cancer Res 61:3877–3881

    PubMed  CAS  Google Scholar 

  71. Qiu GH, Tan LK, Loh KS, Lim CY, Srivastava G, Tsai ST, Tsao SW, Tao Q (2004) The candidate tumor suppressor gene BLU, located at the commonly deleted region 3p21.3, is an E2F-regulated, stress-responsive gene and inactivated by both epigenetic and genetic mechanisms in nasopharyngeal carcinoma. Oncogene 23:4793–4806

    Article  PubMed  CAS  Google Scholar 

  72. Ying J, Li H, Seng TJ, Langford C, Srivastava G, Tsao SW, Putti T, Murray P, Chan AT, Tao Q (2006) Functional epigenetics identifies a protocadherin PCDH10 as a candidate tumor suppressor for nasopharyngeal, esophageal and multiple other carcinomas with frequent methylation. Oncogene 25:1070–1080

    Article  PubMed  CAS  Google Scholar 

  73. Du C, Huang T, Sun D, Mo Y, Feng H, Zhou X, Xiao X, Yu N, Hou B, Huang G, Ernberg I, Zhang Z (2011) CDH4 as a novel putative tumor suppressor gene epigenetically silenced by promoter hypermethylation in nasopharyngeal carcinoma. Cancer Lett 309:54–61

    Article  PubMed  CAS  Google Scholar 

  74. Zhang X, Liu H, Li B, Huang P, Shao J, He Z (2012) Tumor suppressor BLU inhibits proliferation of nasopharyngeal carcinoma cells by regulation of cell cycle, c-Jun N-terminal kinase and the cyclin D1 promoter. BMC Cancer 12:267. doi:10.1186/1471-2407-12-267

    Article  PubMed  CAS  Google Scholar 

  75. Young LS, Dawson CW, Clark D, Rupani H, Busson P, Tursz T, Johnson A, Rickinson AB (1988) Epstein–Barr virus gene expression in nasopharyngeal carcinoma. J Gen Virol 69:1051–1065

    Article  PubMed  CAS  Google Scholar 

  76. Pathmanathan R, Prasad U et al (1995) Clonal proliferations of cells infected with Epstein–Barr virus in preinvasive lesions related to nasopharyngeal carcinoma. N Engl J Med 333:693–698

    Article  PubMed  CAS  Google Scholar 

  77. Pak MW, To KF et al (2002) Nasopharyngeal carcinoma in situ (NPCIS)—pathologic and clinical perspectives. Head Neck 24:989–995

    Article  PubMed  Google Scholar 

  78. Cheung FM, Pang SW et al (2004) Nasopharyngeal intraepithelial lesion: latent Epstein–Barr virus infection with malignant potential. Histopathology 45:171–179

    Article  PubMed  CAS  Google Scholar 

  79. Chan AS, To KF et al (2000) High frequency of chromosome 3p deletion in histologically normal nasopharyngeal epithelia from southern Chinese. Cancer Res 60:5365–5370

    PubMed  CAS  Google Scholar 

  80. Chan AS, To KF et al (2002) Frequent chromosome 9p losses in histologically normal nasopharyngeal epithelia from southern Chinese. Int J Cancer 102:300–303

    Article  PubMed  CAS  Google Scholar 

  81. Liu XQ, Chen HK et al (2003) Alterations of BLU, a candidate tumor suppressor gene on chromosome 3p21.3, in human nasopharyngeal carcinoma. Int J Cancer 106:60–65

    Article  PubMed  CAS  Google Scholar 

  82. Chow LS, Lo KW et al (2004) RASSF1A is a target tumor suppressor from 3p21.3 in nasopharyngeal carcinoma. Int J Cancer 109:839–847

    Article  PubMed  CAS  Google Scholar 

  83. Raab-Traub N (2002) Epstein–Barr virus in the pathogenesis of NPC. Semin Cancer Biol 12(6):431–441

    Article  PubMed  CAS  Google Scholar 

  84. Hu L, Troyanovsky B, Zhang X, Trivedi P, Ernberg I, Klein G (2000) Differences in the immunogenicity of latent membrane protein 1(LMP1) encoded by Epstein–Barr virus genomes derived from LMP1-positive and -negative nasopharyngeal carcinoma. Cancer Res 60:5589–5593

    PubMed  CAS  Google Scholar 

  85. Zhang X, Dawson CW, He Z, Huang P (2012) Immune evasion strategies of the human gamma-herpesviruses: implications for viral tumorigenesis. J Med Virol 84:272–281

    Article  PubMed  CAS  Google Scholar 

  86. Li HM, Zhuang ZH, Wang Q, Pang JC, Wang XH, Wong HL, Feng HC, Jin DY, Ling MT, Wong YC, Eliopoulos AG, Young LS, Huang DP, Tsao SW (2004) Epstein–Barr virus latent membrane protein 1 (LMP1) upregulates Id1 expression in nasopharyngeal epithelial cells. Oncogene 23:4488–4494

    Article  PubMed  CAS  Google Scholar 

  87. Lo AK et al (2010) Upregulation of Id1 by Epstein–Barr virus-encoded LMP1 confers resistance to TGFbeta-mediated growth inhibition. Mol Cancer 9:155

    Article  PubMed  Google Scholar 

  88. Floettmann JE, Ward K, Rickinson AB, Rowe M (1996) Cytostatic effect of Epstein–Barr virus latent membrane protein-1 analyzed using tetracycline-regulated expression in B cell lines. Virology 223:29–40

    Article  PubMed  CAS  Google Scholar 

  89. Deng W, Pang PS, Tsang CM, Hau PM, Yip YL, Cheung ALM, Tsao SW (2012) Epstein–Barr virus-encoded latent membrane Protein 1 Impairs G2 checkpoint in human nasopharyngeal epithelial cells through defective Chk1 activation. PLoS ONE 7:e39095

    Article  PubMed  CAS  Google Scholar 

  90. Gruhne B, Kamranvar SA, Masucci MG, Sompallae R (2009) EBV and genomic instability—a new look at the role of the virus in the pathogenesis of Burkitt’s lymphoma. Sem Cancer Biol 19:394–400

    Article  CAS  Google Scholar 

  91. Gruhne B, Sompallae R, Marescotti D, Kamranvar SA, Gastaldello S, Masucci MG (2009) The Epstein–Barr virus nuclear antigen-1 promotes genomic instability via induction of reactive oxygen species. Proc Natl Acad Sci USA 106:2313–2318

    Article  PubMed  CAS  Google Scholar 

  92. Kamranvar SA, Gruhne B, Szeles A, Masucci MG (2007) Epstein–Barr virus promotes genomic instability in Burkitt’s lymphoma. Oncogene 26:5115–5123

    Article  PubMed  CAS  Google Scholar 

  93. Li JH, Chia M, Shi W, Ngo D, Strathdee CA, Huang D, Klamut H, Liu FF (2002) Tumor-targeted gene therapy for nasopharyngeal carcinoma. Cancer Res 62:171–178

    PubMed  CAS  Google Scholar 

  94. Zuo Y, Wu J, Xu Z, Yang S, Yan H, Tan L, Meng X, Ying X, Liu R, Kang T, Huang W (2011) Minicircle-oriP-IFNγ: a novel targeted gene therapeutic system for EBV positive human nasopharyngeal carcinoma. PLoS One. 6e19407

  95. Carbone M, Klein G, Gruber J, Wong M (2004) Modern criteria to establish human cancer etiology. Cancer Res 64:5518–5524

    Article  PubMed  CAS  Google Scholar 

  96. zur Hausen H (2012) Red meat consumption and cancer: reasons to suspect involvement of bovine infectious factors in colorectal cancer. Int J Cancer 130:2475–2483

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

The work on anti-NPC biotherapy was supported by a research grant from Scientific and Technology Project of Dongguan City, China. IE is supported by the Swedish Cancer Society (Cancerfonden) and the Swedish Childhood Cancer Society. The present MS was composed based on a presentation delivered to the annual meeting of Provincial Society of Preventive Medicine of Guangdong, China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiangning Zhang or Gösta Winberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, X., Zhang, Z., Zheng, B. et al. An update on viral association of human cancers. Arch Virol 158, 1433–1443 (2013). https://doi.org/10.1007/s00705-013-1623-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-013-1623-9

Keywords

Navigation