Skip to main content
Log in

Ancient RNA? RT-PCR of 50-year-old RNA identifies peach latent mosaic viroid

  • Brief Report
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

The preservation of macromolecules is at best haphazard. Modern techniques have improved the detection of ancient DNA and proteins, but there is little information on the preservation of RNA. Fifty-year-old dried leaf material showing symptoms of peach calico disease was used successfully in RT-PCRs to amplify peach latent mosaic viroid (PLMVd) RNA and the mRNA for the large subunit of ribulose 1,5-bisphosphate carboxylase (rubisco). These results indicate that naked RNA may be preserved, under suitable conditions, for at least 50 years. The results are discussed in the context of ancient DNA and proteins and the process of fossilization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  1. Farrell RE (2005) RNA methodologies. A laboratory guide for isolation and characterization. 3rd (edn) Elsevier, Burlington

  2. Schweitzer MH, Watt JA, Avci R et al (1999) Beta-keratin specific immunological reactivity in feather-like structures of the Cretaceous Alvarezsaurid, Shuvuuia deserti. J Exper Zool 285:146–157

    Article  CAS  Google Scholar 

  3. Asara JM, Schweitzer MH, Freimark LM et al (2007) Protein sequences from mastodon and Tyrannosaurus rex revealed by mass spectrometry. Science 317:1324–1325

    Article  PubMed  CAS  Google Scholar 

  4. Marota L, Rollo F (2002) Molecular paleontology. Cell Mol Life Sci 59:97–111

    Article  PubMed  CAS  Google Scholar 

  5. Noonan JP, Coop G, Kudaravalli S et al (2006) Sequencing and analysis of Neanderthal genomic DNA. Science 314:1113–1118

    Article  PubMed  CAS  Google Scholar 

  6. Rollo F (1985) Characterisation by molecular hybridization of RNA fragments isolated from ancient (1400BC) seeds. Theor Appl Genet 71:330–333

    CAS  Google Scholar 

  7. Fraile A, Escriu F, Aranda MA et al (1997) A century of tobamovirus evolution in an Australian population of Nicotiana glauca. J Virol 71:8316–8320

    PubMed  CAS  Google Scholar 

  8. Castello JD, Rogers SO, Starmer WT et al (1999) Detection of tomato mosaic tobamovirus RNA in ancient glacial ice. Polar Biol 22:207–212

    Article  Google Scholar 

  9. Zhang G, Shoham D, Gilichinsky D et al (2006) Evidence of influenza A virus RNA in Siberian lake ice. J Virol 80:12229–12235

    Article  PubMed  CAS  Google Scholar 

  10. Hadidi A, Flores R, Randles JW, Semancik JS (2003) Viroids, 1st edn. CSIRO, Melbourne, p 370

    Google Scholar 

  11. Rodio M-E, Delgado S, Flores R, Di Serio F (2006) Variants of Peach latent mosaic viroid inducing peach calico: distribution in infected plants and requirements of the insertion containing the pathogenicity determinant. J Gen Virol 87:231–240

    Article  PubMed  CAS  Google Scholar 

  12. Nassuth A, Pollari E, Helmeczy K, Stewart S, Kofalvi SA (2000) Improved RNA extraction and one-tube RT-PCR assay for simultaneous detection of control plant RNA plus several viruses in plant extracts. J Virol Methods 90:37–49

    Article  PubMed  CAS  Google Scholar 

  13. Untiveros M, Perez-Egusquiza Z, Clover G (2010) PCR assays for the detection of members of the genus Ilarvirus and family Bromoviridae. J Virol Methods 165:97–104

    Article  PubMed  CAS  Google Scholar 

  14. Wei T, Clover G (2008) Use of primers with 5’ non-complimentary sequences in RT-PCR for the detection of nepovirus subgroups A and B. J. Virol. Methods 153:16–21

    Article  PubMed  CAS  Google Scholar 

  15. Pearson MN, Clover GRG, Guy PL, Fletcher JD, Beever RE (2006) A review of the plant viruses and mollicute records for New Zealand. Australas Plant Pathol 35:217–252

    Article  Google Scholar 

  16. Chiu JKH, Chen Y-PP (2012) Conformational features of topologically classified RNA secondary structures. PLoS One 7:e39907. doi:10.1371/journal.pone.0039907

    Article  PubMed  CAS  Google Scholar 

  17. de Leeuw JW, Versteegh GJM, van Bergen PF (2006) Biomacromolecules of algae and plants and their fossil analogues. Plant Ecol 182:209–233

    Google Scholar 

  18. Bidle KD, Lee SH, Marchant DR et al (2007) Fossil genes and microbes in the oldest ice on Earth. Proc Natl Acad Sci USA 104:13455–13460

    Article  PubMed  CAS  Google Scholar 

  19. Manning PL, Morris PM, McMahon A et al (2009) Mineralized soft-tissue structure and chemistry in a mummified hadrosaur from the Hell Creek Formation, North Dakota (USA). Proc R Soc B Biol Sci 276:3429–3437

    Article  CAS  Google Scholar 

  20. Ribechini E, Perez-Arantegui J, Colombini MP (2011) Gas chromatography/mass spectrometry and pyrolysis-gas chromatography/mass spectrometry for the chemical characterisation of modern and archaeological figs (Ficus carica). J Chromatography A 1218:3915–3922

    Article  CAS  Google Scholar 

  21. Gibbs A, Guy P (1979) How long have there been plant viruses in Australia? Aust Plant Pathol 8:41–42

    Article  Google Scholar 

Download references

Acknowledgments

Thanks to the University of Otago and the Brenda Shore Trust for financial support, and to anonymous reviewers for helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul L. Guy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guy, P.L. Ancient RNA? RT-PCR of 50-year-old RNA identifies peach latent mosaic viroid. Arch Virol 158, 691–694 (2013). https://doi.org/10.1007/s00705-012-1527-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-012-1527-0

Keywords

Navigation