Skip to main content

Advertisement

Log in

Evaluation of reanalysis air temperature products in permafrost regions on the Qinghai-Tibetan Plateau

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

Surface air temperature is important for climate change, hydrological, and ecosystems undergoing climate warming in the permafrost regions on the Qinghai-Tibetan Plateau (QTP). We monitored daily air temperatures at five sites (alpine desert, alpine desert steppe, alpine steppe, alpine meadow, and alpine wet meadow) from 2011 to 2015 in permafrost regions on the QTP. Using this data, we evaluated the performance of five different reanalysis air temperature products (CFSR, ERA-Interim, GLDAS-NOAH, MERRA, JRA-55, and CMFD). These results demonstrated that the ERA-Interim air temperature products exhibited the best performance at the majority of sites. However, the original ERA-Interim air temperature products were found to overestimate air temperature at most sites. The calibration models were established by the observed daily air temperatures measured from 2013 to 2015 for the ERA-Interim air temperature products, which validated with observational data from 2011 to 2012. Following calibration, ERA-Interim products were found to be closer to the observations made across all sites. In addition, this paper demonstrated a warming trend present in month, seasonal, and annual mean air temperature from the calibration results collected from 1980 to 2015. These results demonstrated that the largest warming trend was observed in February, while the smallest warming trend was observed in March. We demonstrated that all air temperatures warmed fastest in the summer and winter, more slowly in autumn, and the slowest in spring at the majority of sites tested. In addition, we found that the average annual air temperature warming trends were 0.0398, 0.0394, 0.0288, 0.0259, and 0.0254 °C/year in the alpine desert steppe, alpine desert, alpine steppe, alpine meadow, and alpine wet meadow in the permafrost regions on the QTP, respectively. These findings generate a useful tool for the recognizing of the variation in permafrost under climate change in permafrost regions on the QTP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Balsamo G, Albergel C, Beljaars A, Boussetta S, Brun E, Cloke H, Dee D, Dutra E, Munoz-Sabater J, Pappenberger F, de Rosnay P, Stockdale T, Vitart F (2015) ERA-interim/land: a global land surface reanalysis data set. Hydrol Earth Syst Sci 19(1):389–407

    Article  Google Scholar 

  • Bond-Lamberty B, Thomson A (2010) Temperature-associated increases in the global soil respiration record. Nature 464(7288):579–U132

    Article  Google Scholar 

  • Canadell JG, Le Quere C, Raupach MR, Field CB, Buitenhuis ET, Ciais P, Conway TJ, Gillett NP, Houghton RA, Marland G (2007) Contributions to accelerating atmospheric CO(2) growth from economic activity, carbon intensity, and efficiency of natural sinks. Proc Natl Acad Sci U S A 104(47):18866–18870

    Article  Google Scholar 

  • Chang X, Jin H, Wang Y, Zhang Y, Zhou G, Che F, Zhao Y (2012) Influences of vegetation on permafrost: a review. Acta Ecol Sin 32(24):7981–7990

    Article  Google Scholar 

  • Chapin FS, Sturm M, Serreze MC, McFadden JP, Key JR, Lloyd AH, McGuire AD, Rupp TS, Lynch AH, Schimel JP, Beringer J, Chapman WL, Epstein HE, Euskirchen ES, Hinzman LD, Jia G, Ping CL, Tape KD, Thompson CDC, Walker DA, Welker JM (2005) Role of land-surface changes in Arctic summer warming. Science 310(5748):657–660

    Article  Google Scholar 

  • Chen B, Luo S, Lu S, Zhang Y, Ma D (2014) Effects of the soil freeze-thaw process on the regional climate of the Qinghai-Tibet Plateau. Clim Res 59(3):243–257

    Article  Google Scholar 

  • Cheng G, Wu T (2007) Responses of permafrost to climate change and their environmental significance, Qinghai-Tibet Plateau. J Geophy Res Earth Surf 112(F2)

  • Chu D, Yang Y, Luobu J, Bianba C (2016) Applicability analysis of MERRA surface air temperature over the Qinghai-Xizang Plateau. Plateau Meteorology 35(2):337–350

    Google Scholar 

  • Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, Bechtold P, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer AJ, Haimberger L, Healy SB, Hersbach H, Holm EV, Isaksen L, Kallberg P, Koehler M, Matricardi M, McNally AP, Monge-Sanz BM, Morcrette JJ, Park BK, Peubey C, de Rosnay P, Tavolato C, Thepaut JN, Vitart F (2011) The ERA-interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137(656):553–597

    Article  Google Scholar 

  • Ding M, Li L, Zhang Y, Liu L, Wang Z (2014) Temperature change and its elevation dependency on the Tibetan Plateau and its vicinity from 1971 to 2012. Resour Sci 36(7):1509–1518

    Google Scholar 

  • Du J, Duo B, Hu J, Liao J, Zhou M (2007) Climatic change of sunshine duration and its influencing factors over Tibet during the last 35 years. Acta Geograph Sin 62(5):492–500

    Google Scholar 

  • Duan A, Wu G, Zhang Q, Liu Y (2006) New proofs of the recent climate warming over the Tibetan Plateau as a result of the increasing greenhouse gases emissions. Chin Sci Bull 51(8):989–992

    Article  Google Scholar 

  • Duan A, Xiao Z (2015) Does the climate warming hiatus exist over the Tibetan Plateau? Sci Rep 5

  • Fang X, Luo S, Lyu S (2018) Observed soil temperature trends associated with climate change in the Tibetan Plateau, 1960–2014. Theor Appl Climatol 1–13

  • Feng S, Tang M (1998) New evidence for the Qinghai-Xizang(Tibet) Plateau as a pilot region of climatic fluctuation in China. Chin Sci Bull 43(6):633–633

    Article  Google Scholar 

  • Field CB, Raupach M (2004) Toward CO2 stabilization: issues, strategies, and consequences. Island Press, Washington, DC

    Google Scholar 

  • Frauenfeld OW, Zhang TJ, Serreze MC (2005) Climate change and variability using European Centre for Medium-Range Weather Forecasts reanalysis (ERA-40) temperatures on the Tibetan Plateau. J Geophys Res-Atmos 110(D2)

  • Guo D, Wang H (2012) The significant climate warming in the northern Tibetan Plateau and its possible causes. Int J Climatol 32(12):1775–1781

    Article  Google Scholar 

  • Hansson K, Šimůnek J, Mizoguchi M, Lundin L-C, Van Genuchten MT (2004) Water flow and heat transport in frozen soil. Vadose Zone J 3(2):693–704

    Google Scholar 

  • Hu G, Zhao L, Li R, Wu T, Wu X, Pang Q, Xiao Y, Qiao Y, Shi J (2015) Modeling hydrothermal transfer processes in permafrost regions of Qinghai-Tibet Plateau in China. Chin Geogr Sci 25(6):713–727

    Article  Google Scholar 

  • Hu G, Zhao L, Wu X, Li R, Wu T, Xie C, Qiao Y, Shi J, Li W, Cheng G (2016) New Fourier-series-based analytical solution to the conduction-convection equation to calculate soil temperature, determine soil thermal properties, or estimate water flux. Int J Heat Mass Transf 95:815–823

    Article  Google Scholar 

  • Hu G, Zhao L, Wu X, Wu T, Li R, Xie C, Xiao Y, Pang Q, Liu G, Hao J, Shi J, Qiao Y (2017) A mathematical investigation of the air-ground temperature relationship in permafrost regions on the Tibetan plateau. Geoderma 306:244–251

    Article  Google Scholar 

  • Hu G, Zhao L, Li AR, Wu X, Wu T, Zhu X, Pang Q, Liu GY, Du E, Zou D, Hao J, Li W (2019) Simulation of land surface heat fluxes in permafrost regions on the Qinghai-Tibetan Plateau using CMIP5 models. Atmos Res 220:155–168

  • Hu G, Zhao L, Li R, Wu X, Wu T, Xie C, Zhu X, Su Y (2019) Variations in soil temperature from 1980 to 2015 in permafrost regions on the Qinghai-Tibetan Plateau based on observed and reanalysis products. Geoderma 337:893–905

    Article  Google Scholar 

  • Hua W, Fan G, Zhang Y, Zhu L, Wen X, Zhang Y, Lai X, Wang B, Zhang M, Hu Y, Wu Q (2017) Trends and uncertainties in surface air temperature over the Tibetan Plateau, 1951–2013. Journal of Meteorological Research 31(2):420–430

  • Hua W, Yang K, Fan G (2017) Uncertainty in hottest years ranking: analysis of Tibetan Plateau surface air temperature. Atmos Ocean Sci Lett 10(4):337–341

    Article  Google Scholar 

  • IPCC (2013) Climate change synthesis report, Cambridge

  • Kang S, Xu Y, You Q, Fluegel W-A, Pepin N, Yao T (2010) Review of climate and cryospheric change in the Tibetan Plateau. Environ Res Lett 5(1)

  • Karl TR, Arguez A, Huang B, Lawrimore JH, McMahon JR, Menne MJ, Peterson TC, Vose RS, Zhang H-M (2015) Possible artifacts of data biases in the recent global surface warming hiatus. Science 348(6242):1469–1472

    Article  Google Scholar 

  • Kobayashi S, Ota Y, Harada Y, Ebita A, Moriya M, Onoda H, Onogi K, Kamahori H, Kobayashi C, Endo H, Miyaoka K, Takahashi K (2015) The JRA-55 reanalysis: general specifications and basic characteristics. J Meteorol Soc Jpn 93(1):5–48

    Article  Google Scholar 

  • Lachenbruch AH (1994) Permafrost, the active layer, and changing climate. US Geological Survey, Reston, pp 2331–1258

    Google Scholar 

  • Li Y (2002) Analyses of cloudiness, sunshine, temperature and daily range on the eastern side of Qinghai-Xizang Plateau in recent 40 years. Plateau Meteorology 21(3):327–332

    Google Scholar 

  • Li L, Zhu X, Qin N, Wang Z, Wang Q, Zhou L (2003) Study on temperature variations and its anomaly patterns over Qinghai-Xizang Plateau. Plateau Meteorology 22(5):524–530

    Google Scholar 

  • Li C, Zhang TJ, Chen J (2004) Climatic change of Qinghai-Xizang Plateau region in recent 40-year reanalysis and surface observation data-contrast of observational data and NCEP, ECMWF surface air temperature and precipitation. Plateau Meteorology 23(Suppl 12):97–103

  • Li S, Xu L, Guo Y, Qian W, Zhang G, Li C (2006) Change of annual air temperature over Qinghai-Tibet Plateau during recent 34 years. J Deser Res 26(1):27–34

  • Li H, Fan G, Zhou D, Hua W, Liu Y, Li X (2008) Character of spring vegetation change in the Qinghai-Tibet Plateau and its influence on summer air temperature. Sci Geogr Sin 28(2):259–265

    Article  Google Scholar 

  • Li L, Chen X, Wang Z, Xu W, Tang H (2010) Climate change and its regional differences over the Tibetan Plateau. Adv Clim Chang Res 6(3):181–186

    Google Scholar 

  • Li R, Shihua LU, Han b, Gao Y (2012) Preliminary comparison and analyses of air temperature at 2 m height between three reanalysis data-sets and observation in the east of Qinghai-Xiang Plateau. Plateau Meteorology 31(6):1488–1502

    Google Scholar 

  • Liu XD, Chen BD (2000) Climatic warming in the Tibetan Plateau during recent decades. Int J Climatol 20(14):1729–1742

    Article  Google Scholar 

  • Liu X, Hou P (1998) Relationship between the climatic warming over the Qinghai-Xizang Plateau and its surrounding areas in recent 30 years and the elevation. Plateau Meteorology 17(3):245–245

    Google Scholar 

  • Liu G, Lu H (2010) Basic characteristics of major climatic factors on Qinghai-Tibet Plateau in recent 45 years. Geogr Res 29(12):2281–2288

    Google Scholar 

  • Liu X, Cheng Z, Yan L, Yin Z-Y (2009) Elevation dependency of recent and future minimum surface air temperature trends in the Tibetan Plateau and its surroundings. Glob Planet Chang 68(3):164–174

    Article  Google Scholar 

  • Liu C, Yu Y, Xie J, Zhou X, Li J, Ge J (2015) Applicability of soil temperature and moisture in several datasets over Qinghai-Xizang Plateau. Plateau Meteorol 34(3):653–665

    Google Scholar 

  • Ma L, Zhang T, Li Q, Frauenfeld OW, Qin D (2008) Evaluation of ERA-40, NCEP-1, and NCEP-2 reanalysis air temperatures with ground-based measurements in China. J Geophys Res-Atmos 113(D15)

  • Osterkamp TE (2005) The recent wanning of permafrost in Alaska. Glob Planet Chang 49(3–4):187–202

    Article  Google Scholar 

  • Pang Q, Zhao L, Li S (2011) Influences of local factors on ground temperatures in permafrost regions along the Qinghai-Tibet highway. J Glaciol Geocryol 33(2):349–356

    Google Scholar 

  • Payette S, Delwaide A, Caccianiga M, Beauchemin M (2004) Accelerated thawing of subarctic peatland permafrost over the last 50 years. Geophys Res Lett 31(18)

  • Qin J, Yang K, Liang S, Guo X (2009) The altitudinal dependence of recent rapid warming over the Tibetan Plateau. Clim Chang 97(1–2):321–327

    Article  Google Scholar 

  • Qin Y, Wu T, Wu X, Li R, Xie C, Qiao Y, Hu G, Zhu X, Wang W, Shang W (2017) Assessment of reanalysis soil moisture products in the permafrost regions of the central of the Qinghai–Tibet Plateau. Hydrol Process 31(26):4647–4659

    Article  Google Scholar 

  • Ramanathan V, Carmichael G (2008) Global and regional climate changes due to black carbon. Nat Geosci 1(4):221–227

    Article  Google Scholar 

  • Ren Y, Shi Y, Wang J, Zhang Y, Wang S (2012) An overview of temperature vrariations on the Qinghai-Tibetan plateau in the recent hundred years using UK CRU high resolution grid data. Journal of Lanzhou University. Nat Sci 48(6):63–68

  • Rienecker MM, Suarez MJ, Gelaro R, Todling R, Bacmeister J, Liu E, Bosilovich MG, Schubert SD, Takacs L, Kim G-K, Bloom S, Chen J, Collins D, Conaty A, Da Silva A, Gu W, Joiner J, Koster RD, Lucchesi R, Molod A, Owens T, Pawson S, Pegion P, Redder CR, Reichle R, Robertson FR, Ruddick AG, Sienkiewicz M, Woollen J (2011) MERRA: NASA's modern-era retrospective analysis for research and applications. J Clim 24(14):3624–3648

    Article  Google Scholar 

  • Rodell M, Houser PR, Jambor U, Gottschalck J, Mitchell K, Meng CJ, Arsenault K, Cosgrove B, Radakovich J, Bosilovich M, Entin JK, Walker JP, Lohmann D, Toll D (2004) The global land data assimilation system. Bull Am Meteorol Soc 85(3):381–394

    Article  Google Scholar 

  • Romanovsky VE, Drozdov DS, Oberman NG, Malkova GV, Kholodov AL, Marchenko SS, Moskalenko NG, Sergeev DO, Ukraintseva NG, Abramov AA, Gilichinsky DA, Vasiliev AA (2010) Thermal state of permafrost in Russia. Permafr Periglac Process 21(2):136–155

    Article  Google Scholar 

  • Saha S, Moorthi S, Wu X, Wang J, Nadiga S, Tripp P, Behringer D, Hou Y-T, Chuang H-Y, Iredell M, Ek M, Meng J, Yang R, Mendez MP, Van Den Dool H, Zhang Q, Wang W, Chen M, Becker E (2014) The NCEP climate forecast system version 2. J Clim 27(6):2185–2208

    Article  Google Scholar 

  • Simmons AJ, Jones PD, Bechtold VD, Beljaars ACM, Kallberg PW, Saarinen S, Uppala SM, Viterbo P, Wedi N (2004) Comparison of trends and low-frequency variability in CRU, ERA-40, and NCEP/NCAR analyses of surface air temperature. J Geophys Res-Atmos 109(D24)

  • Song C, Pei T, Zhou C (2012) Research progresses of surface temperature characteristic change over Tibetan Plateau since 1960. Prog Geogr 31(11):1503–1509

    Google Scholar 

  • Sun Y, Gao Q, Min J (2013) Comparison of reanalysis data and observation about summer/winter surface air temperature in Tibet. Plateau Meteorology 32(4):909–920

    Google Scholar 

  • Trenberth KE, Fasullo JT (2013) An apparent hiatus in global warming? Earth’s Future 1(1):19–32

    Article  Google Scholar 

  • Walvoord MA, Kurylyk BL (2016) Hydrologic impacts of thawing permafrost-a review. Vadose Zone J 15(6):20

    Article  Google Scholar 

  • Wang S, Ye J (1995) An analysis of global warming during the last one hundred years. Sci Atmos Sin 19(5):545–545

    Google Scholar 

  • Wang A, Zeng X (2012) Evaluation of multireanalysis products with in situ observations over the Tibetan Plateau. J Geophys Res-Atmos 117

  • Wang B, Bao Q, Hoskins B, Wu G, Liu Y (2008) Tibetan plateau warming and precipitation changes in East Asia. Geophys Res Lett 35(14)

  • Wang P, Tang G, Cao L, Liu Q, Ren Y (2012) Surface air temperature variability and its relationship with Altitude & Latitude over the Tibetan Plateau in 1981-2010. Clim Change Res 8(5):313–319

    Google Scholar 

  • Wu S, Yin Y, Zheng D, Yang Q (2005) Climate changes in the Tibetan Plateau during the last three decades. Acta Geograph Sin 60(1):3–11

  • Wu, Q. and Zhang, T., 2008. Recent permafrost warming on the Qinghai-Tibetan Plateau. J Geophys Res, 113(D13)

  • Wu L, Zhang J (2014) Strong subsurface soil temperature feedbacks on summer climate variability over the arid/semi-arid regions of East Asia. Atmos Sci Lett 15(4):307–313

    Google Scholar 

  • Yanai M, Wu GX (2006) Effects of the Tibetan Plateau. In: Wang B (ed) The Asian monsoon. Springer, Berlin, pp 513–549.

  • Yang K, He J, Tang W, Qin J, Cheng CCK (2010) On downward shortwave and longwave radiations over high altitude regions: observation and modeling in the Tibetan Plateau. Agric For Meteorol 150(1):38–46

    Article  Google Scholar 

  • Yang K, Wu H, Qin J, Lin C, Tang W, Chen Y (2014) Recent climate changes over the Tibetan Plateau and their impacts on energy and water cycle: a review. Glob Planet Chang 112:79–91

    Article  Google Scholar 

  • Ye D, Gao Y (1979) The meteorology of the Qinghai-Xizang (Tibet) Plateau. Science Press, Beijing 278 pp

    Google Scholar 

  • You Q, Kang S, Pepin N, Fluegel W-A, Yan Y, Behrawan H, Huang J (2010) Relationship between temperature trend magnitude, elevation and mean temperature in the Tibetan Plateau from homogenized surface stations and reanalysis data. Glob Planet Chang 71(1–2):124–133

    Article  Google Scholar 

  • You Q, Jiang Z, Wang D, Pepin N, Kang S (2017) Simulation of temperature extremes in the Tibetan Plateau from CMIP5 models and comparison with gridded observations. Clim Dyn 4:1–15

    Google Scholar 

  • Yu RC, Wang B, Zhou TJ (2004) Climate effects of the deep continental stratus clouds generated by the Tibetan Plateau. J Clim 17(13):2702–2713

    Article  Google Scholar 

  • Zhang TJ (2005) Influence of the seasonal snow cover on the ground thermal regime: an overview. Rev Geophys 43(4)

  • Zhang R, Zuo Z (2011) Impact of spring soil moisture on surface energy balance and summer monsoon circulation over East Asia and precipitation in East China. J Clim 24(13):3309–3322

    Article  Google Scholar 

  • Zhang L, Zhao L, Li R, Gao L, Xiao Y, Qiao Y, Shi J (2016) Investigating the influence of soil moisture on albedo and soil thermodynamic parameters during the warm season in Tanggula Range. Tibetan Plateau J Glaciol Geocryology 38(2):351–358

    Google Scholar 

  • Zhao L (2004) The freezing-thawing processes of active layer and changes of seasonally frozen ground on the Tibetan Plateau. Paper for degree of doctor of philosophy, CAS, pp 25–39

  • Zhao L, Cheng G, Li S, Zhao X, Wang S (2000) Thawing and freezing processes of active layer in Wudaoliang region of Tibetan Plateau. Chin Sci Bull 45(23):2181–2187

    Article  Google Scholar 

  • Zhao T, Guo W, Fu C (2008) Calibrating and evaluating reanalysis surface temperature error by topographic correction. J Clim 21(6):1440–1446

    Article  Google Scholar 

  • Zheng R, Li D, Jiang Y (2015) New characteristics of temperature change over Qinghai-Xizang Plateau on the background of global warming. Plateau Meteorology 34(6):1531–1539

    Google Scholar 

  • Zhou L, Du Z (2016) Regional differences in the surface energy budget over China: an evaluation of a selection of CMIP5 models. Theor Appl Climatol 124(1–2):241–266

    Article  Google Scholar 

  • Zhou T, Li Z (2002) Simulation of the east Asian summer monsoon using a variable resolution atmospheric GCM. Clim Dyn 19(2):167–180

    Article  Google Scholar 

  • Zhou T, Yu R (2006) Twentieth-century surface air temperature over China and the globe simulated by coupled climate models. J Clim 19(22):5843–5858

    Article  Google Scholar 

  • Zhu X, Liu Y, Wu G (2012) An assessment of summer sensible heat flux on the Tibetan Plateau from eight data sets. Sci China-Earth Sci 55(5):779–786

    Article  Google Scholar 

  • Zhu F, Cuo L, Zhang Y, Luo J-J, Lettenmaier DP, Lin Y, Liu Z (2017) Spatiotemporal variations of annual shallow soil temperature on the Tibetan Plateau during 1983–2013. Clim Dyn 1–19

  • Zou D, Zhao L, Sheng Y, Chen J, Hu G, Wu T, Wu J, Xie C, Wu X, Pang Q, Wang W, Du E, Li W, Liu G, Li J, Qin Y, Qiao Y, Wang Z, Shi J, Cheng G (2017) A new map of permafrost distribution on the Tibetan Plateau. Cryosphere 11(6):2527–2542

    Article  Google Scholar 

Download references

Funding

This work was financially supported by the Strategic Priority Research Program of Chinese Academy of Sciences (XDA20020102, XDA20100103), and the National Natural Science Foundation of China (41601078, 41771060, 41601070, 41801060).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guojie Hu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, G., Zhao, L., Wu, X. et al. Evaluation of reanalysis air temperature products in permafrost regions on the Qinghai-Tibetan Plateau. Theor Appl Climatol 138, 1457–1470 (2019). https://doi.org/10.1007/s00704-019-02888-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-019-02888-8

Navigation