Skip to main content

Advertisement

Log in

Assessing vegetation response to precipitation in northwest Morocco during the last decade: an application of MODIS NDVI and high resolution reanalysis data

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

Understanding vegetation dynamics provides information on changes in land cover that can directly be related to regional changes in the climate system. In data-sparse regions, i.e. northwest Morocco studies are limited by the availability of comprehensive information on precipitation. We extracted precipitation data of high spatiotemporal resolution (2 km, 1 day) from the Northwest Africa Reanalysis (NwAR) and gridded Normalized Difference Negetation Index (NDVI) of the Moderate Resolution Imaging Spectroradiometer (MODIS) that cover northwest Morocco over ten hydrological years (September 2000 to August 2010). The results are based on a sequence of linear regression analyses. The mean precipitation of different input timeframes is systematically applied as the predicting variables to the mean NDVI of the growing seasons. Results show that 73 % of the variance in mean NDVI is explained by the variance in mean precipitation at the beginning of the growing season (November to the end of December). The results also show that 75 % of the variance in the mean NDVI of agriculturally used areas is explained by the variance in mean precipitation of beginning September to the end of December. Potentially irrigated land cover of low to medium explained variance but of a high seasonal range in NDVI cover about 14 % of the study region. We conclude that a considerable part of agricultural used areas are still potentially rain-fed. The applied methods and especially the re-analysed precipitation data of high spatiotemporal resolution open a new quality of analysis valuable for, e.g. monitoring aspects, policy decisions or regulatory actions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Al-Bakri JT, Suleiman AS (2004) NDVI response to rainfall in different ecological zones in Jordan. Int J Remote Sens 25:3897–3912. doi:10.1080/01431160310001654428

    Article  Google Scholar 

  • Balaghi R, Tychon B, Eerens H, Jlibene M (2008) Empirical regression models using NDVI, rainfall and temperature data for the early prediction of wheat grain yields in Morocco. Int J Appl Earth Observation and Geoinformation 10:438–452. doi:10.1016/j.jag.2006.12.001

    Article  Google Scholar 

  • Bolton DK, Friedl M (2013) Forecasting crop yield using remotely sensed vegetation indices and crop phenology metrics. Agric For Meteorol 173:74–84. doi:10.1016/j.agrformet.2013.01.007

    Article  Google Scholar 

  • Bromwich DH, Bai LH, Bjarnason GG (2005) High-resolution regional climate simulations over Iceland using Polar MM5. Mon Weather Rev 133(12):3527–3547. doi:10.1175/MWR3168.1

    Article  Google Scholar 

  • Chamaille-Jammes S, Fritz H, Murindagomo F (2006) Spatial patterns of the NDVI-rainfall relationship at the seasonal and interannual time scales in an African savanna. Int J Remote Sens 27:5185–5200. doi:10.1080/01431160600702392

    Article  Google Scholar 

  • Chen F, Dudhia J (2001) Coupling an advanced land surface-hydrology model with the Penn State-NCAR MM5 modeling system. Part I: model implementation and sensitivity. Mon Weather Rev 129(4):569–585

    Article  Google Scholar 

  • Chu D, Lu L, Zhang T (2007) Sensitivity of normalized difference vegetation index (NDVI) to seasonal and interannual climate conditions in the Lhasa area, Tibetan plateau, China. Arct Antarctic Alp Res 39:635–641. doi:10.1657/1523-0430(07-501)[CHU]2.0.CO;2

    Article  Google Scholar 

  • Davenport ML, Nicholson SE (1993) On the relation between rainfall and the normalized difference vegetation index for diverse vegetation types in East Africa. Int J Remote Sens 14:2369–2389. doi:10.1080/01431169308954042

    Article  Google Scholar 

  • Dudhia J (1989) Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J Atmospheric Sciences 46(20):3077–3107. doi:10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2

    Article  Google Scholar 

  • du Plessis WP (1999) Linear regression relationships between NDVI, vegetation and rainfall in Etosha National Park, Namibia. JArid Environments 42:235–260. doi:10.1006/jare.1999.0505

    Article  Google Scholar 

  • Eklundh L (1998) Estimating relations between AVHRR NDVI and rainfall in East Africa at 10-day and monthly time scales. Int J Remote Sens 19:563–568. doi:10.1080/014311698216198

    Article  Google Scholar 

  • Fang J, Piao S, Zhou L, He J, Wei F, Myneni RB, Tucker CJ, Tan K (2005) Precipitation patterns alter growth of temperate vegetation. Geophys Res Lett 32, L21411. doi:10.1029/2005GL024231

    Article  Google Scholar 

  • Gaughan AE, Stevens FR, Gibbes C, Southworth J, Binford MW (2012) Linking vegetation response to seasonal precipitation in the Okavango-Kwando-Zambezi catchment of southern Africa. Int J Remote Sens 33:6783–6804. doi:10.1080/01431161.2012.692831

    Article  Google Scholar 

  • Grell G, Devenyi D (2002) A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophys Res Lett 29(14):1693. doi:10.1029/2002GL015311

    Article  Google Scholar 

  • Herrmann SM, Anyamba A, Tucker CJ (2005) Recent trends in vegetation dynamics in the African Sahel and their relationship to climate. Global Environmental Change-Human and Policy Dimensions 15:394–404. doi:10.1016/j.gloenvcha.2005.08.004

    Article  Google Scholar 

  • Hess T, Stephens W, Thomas G (1996) Modelling NDVI from decadal rainfall data in the North East Arid Zone of Nigeria. J Environ Manag 48:249–261. doi:10.1006/jema.1996.0076

    Article  Google Scholar 

  • Hielkema JU, Prince SD, Astle WL (1986) Rainfall and vegetation monitoring in the Savanna Zone of the Democratic Republic of Sudan using the NOAA Advanced Very High Resolution Radiometer. Int J Remote Sens 7:1499–1513. doi:10.1080/01431168608948950

    Article  Google Scholar 

  • Hong S-Y, Dudhia J, Chen S-H (2004) A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon Weather Rev 132(1):103–120

    Article  Google Scholar 

  • Höpfner C, Scherer D (2011) Analysis of vegetation and land cover dynamics in north-western Morocco during the last decade using MODIS NDVI time series data. Biogeosciences 8:3359–3373. doi:10.5194/bg-8-3359-2011

    Article  Google Scholar 

  • Huete A, Justice C, Van Leuwen W (1999) MODIS vegetation index (MOD13). Algorithm theoretical basis document version 3. NASA 129 pp. available at: http://modis.gsfc.nasa.gov/data/atbd/land_atbd.php, access: 28 April 2011

  • Iwasaki H (2009) NDVI prediction over Mongolian grassland using GSMaP precipitation data and JRA-25/JCDAS temperature data. J Arid Environ 73:557–562. doi:10.1016/j.jaridenv.2008.12.007

    Article  Google Scholar 

  • Jobbagy EG, Osvaldo ES, Paruelo JM (2002) Patterns and controls of primary production in the Patagonian steppe: a remote sensing approach. Ecology 83:307–319. doi:10.1890/0012-9658(2002)083[0307:PACOPP]2.0.CO;2

    Google Scholar 

  • Jackson RD, Huete AR (1991) Interpreting vegetation indices. Prev Vet Med 11:185–200. doi:10.1016/S0167-5877(05)80004-2

    Article  Google Scholar 

  • Janjic ZI (2002) Nonsingular implementation of the Mellor-Yamada level 2.5 scheme in the NCEP meso model. Tech Rep 437

  • Jarlan L, Driouech F, Tourre Y, Duchemin B, Bouyssié M, Abaoui J, Ouldbba A, Mokssit A, Chehbouni G (2013) Spatio-temporal variability of vegetation cover over Morocco (1982–2008): linkages with large scale climate and predictability. Int J Climatol 34(4):1245–1261

    Article  Google Scholar 

  • Kerr YH, Imbernon J, Dedieu G, Hautecoeur O, Lagouarde JP, Seguin B (1989) NOAA AVHRR and its uses for rainfall and evapotranspiration monitoring. Int J Remote Sens 10:847–854. doi:10.1080/01431168908903925

    Article  Google Scholar 

  • Kusaka H, Kondo H, Kikegawa Y, Kimura F (2001) A simple single-layer urban canopy model for atmospheric models: comparison with multi-layer and slab models. Bound-Layer Meteorol 101(3):329–358

    Article  Google Scholar 

  • Li J, Lewis J, Rowland J, Tappan G, Tieszen LL (2004) Evaluation of land performance in Senegal using multi-temporal NDVI and rainfall series. J Arid Environ 59:463–480. doi:10.1016/j.jaridenv.2004.03.019

    Article  Google Scholar 

  • Lunetta RS, Knight JF, Ediriwickrema J, Lyon JG, Worthy LD (2006) Land-cover change detection using multi-temporal MODIS NDVI data. Remote Sens Environ 105:142–154. doi:10.1016/j.rse.2006.06.018

    Article  Google Scholar 

  • Malo AR, Nicholson SE (1990) A study of rainfall and vegetation dynamics in the African Sahel using normalized difference vegetation index. J Arid Environ 19:1–24

    Google Scholar 

  • Martiny N, Richard Y, Camberlin P (2005) Interannual persistence effects in vegetation dynamics of semi-arid Africa. Geophys Res Lett 32, L24403. doi:10.1029/2005GL024634

    Article  Google Scholar 

  • Maussion F, Scherer D, Finkelnburg R, Richters J, Yang W, Yao T (2011) WRF simulation of a precipitation event over the Tibetan Plateau, China—an assessment using remote sensing and ground observations. Hydrol Earth Syst Sci 15:1795–1817. doi:10.5194/hess-15-1795-2011

    Article  Google Scholar 

  • Maussion F, Scherer D, Mölg T, Collier E, Curio J, Finkelnburg R (2014) Precipitation seasonality and variability over the Tibetan Plateau as resolved by the High Asia Reanalysis. J Clim. doi:10.1175/JCLI-D-13-00282.1

    Google Scholar 

  • Mlawer E, Taubman S, Brown P, Iacono M, Clough S (1997) Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J Geophys Res-Atmos 102:16663–16682. doi:10.1029/97JD00237

    Article  Google Scholar 

  • Nicholson SE, Davenport ML, Malo A (1990) A comparison of the vegetation response to rainfall in Sahel and East Africa, using normalized vegetation index from NOAA AVHRR. Climate Change 17:209–241. doi:10.1007/BF00138369

    Article  Google Scholar 

  • Nicholson SE, Farrar TJ (1994) The influence of soil type on the relationship between NDVI, rainfall and soil moisture in semiarid Botswana. I. NDVI response to rainfall. Remote Sens Environ 50:107–120. doi:10.1016/0034-4257(94)90038-8

    Article  Google Scholar 

  • Omuto CT, Vargas RR, Alim MS, Paron P (2010) Mixed-effects modelling of time series NDVI-rainfall relationship for detecting human-induced loss of vegetation cover in drylands. J Arid Environ 74:1552–1563. doi:10.1016/j.jaridenv.2010.04.001

    Article  Google Scholar 

  • Penuelas J, Filella I, Zhang XY, Llorens L, Ogaya R, Lloret F, Comas P, Estiarte M, Terradas J (2004) Complex spatiotemporal phenological shifts as a response to rainfall changes. New Phytol 161:837–846. doi:10.1111/j.1469-8137.2004.01003.x

    Article  Google Scholar 

  • Pinter PJ, Hatfield JL, Schepers JS, Barnes EM, Moran MS, Daughtry CST, Upchurch DR (2003) Remote sensing for crop management. Photogrammetric Engineering Remote Sens 69(6):647–664

    Article  Google Scholar 

  • Proud SR, Rasmussen LV (2011) The influence of seasonal rainfall upon Sahel vegetation. Remote Sensing Letters 2:241–249. doi:10.1080/01431161.2010.515268

    Article  Google Scholar 

  • Puigdefabregas J, Mendizabal T (1998) Perspectives on desertification: western Mediterranean. JArid Environ 39:209–224. doi:10.1006/jare.1998.0401

    Google Scholar 

  • Reed B, Brown J, Vanderzee D, Loveland T, Merchant J, Ohlen D (1994) Measuring phenological variability from satellite imagery. J Vegetation Sci 5:703–714. doi:10.2307/3235884

    Article  Google Scholar 

  • Richard Y, Poccard I (1998) A statistical study of NDVI sensitivity to seasonal and interannual rainfall variations in Southern Africa. Int J Remote Sens 19:2907–2920. doi:10.1080/014311698214343

    Article  Google Scholar 

  • Schmidt H, Gitelson A (2000) Temporal and spatial vegetation cover changes in Israeli transition zone: AVHRR-based assessment of rainfall impact. Int J Remote Sens 21:997–1010. doi:10.1080/014311600210399

    Article  Google Scholar 

  • Schneider U, Becker A, Finger P, Meyer-Christoffer A, Ziese M, Rudolf B (2013) GPCC’s new land surface precipitation climatology based on quality-controlled in situ data and its role in quantifying the global water cycle. Theoretical App Climatology 115(1–2):15–40. doi:10.1007/s00704-013-0860-x

    Google Scholar 

  • Seiler RA, Kogan F, Wei G, Vinocur M (2007) Seasonal and interannual responses of the vegetation and production of crops in Cordoba–Argentina assessed by AVHRR derived vegetation indices. Advances Space Res 39(1):88–94. doi:10.1016/j.asr.2006.05.024

    Article  Google Scholar 

  • Sellers P (1985) Canopy reflectance, photosynthesis and transpiration. Int J Remote Sens 6:1335–1372

    Article  Google Scholar 

  • Skamarock WC, Klemp JB (2008) A time-split nonhydrostatic atmospheric model for weather research and forecasting applications. J Comput Phys 227:3465–3485. doi:10.1016/j.jcp.2007.01.037

    Article  Google Scholar 

  • Sobrino JA, Raissouni N (2000) Toward remote sensing methods for land cover dynamic monitoring : application to Morocco. Int J Remote Sens 21:353–366

    Article  Google Scholar 

  • Tanaka S, Sugimura T, Mishima S (2000) Monitoring of vegetation extent around Kitui pilot forest (afforestation test site) in Kenya with rainfall by satellite data. Remote Sens Land Surf Characterisation 26:1039–1042. doi:10.1016/S0273-1177(99)01112-6

    Google Scholar 

  • Timbal B, Arblaster JM (2006) Land cover change as an additional forcing to explain the rainfall decline in the south west of Australia. Geophys Res Lett 33(7)L07717. doi: 10.1029/2005gl025361

  • Thompson G, Field PR, Rasmussen RM, Hall WD (2008) Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: implementation of a new snow parameterization. Mon Weather Rev 136(12):5095–5115

    Article  Google Scholar 

  • Udelhoven T, Stellmes M, Del Barrio G, Hill J (2009) Assessment of rainfall and NDVI anomalies in Spain (1989–1999) using distributed lag models. Int J Remote Sens 30(8):1961–1967. doi:10.1080/01431160802546829

    Article  Google Scholar 

  • Vanacker V, Linderman M, Lupo F, Flasse S, Lambin E (2005) Impact of short-term rainfall fluctuation on interannual land cover change in sub-Saharan Africa. Glob Ecology Biogeography 14(2):123–135. doi:10.1111/j.1466-822X.2005.00136.x

    Article  Google Scholar 

  • Wang J, Price KP, Rich PM (2001) Spatial patterns of NDVI in response to precipitation and temperature in the central Great Plains. Int J Remote Sens 22(18):3827–3844. doi:10.1080/01431160010007033

    Article  Google Scholar 

  • WIST (Warehouse Inventory Search Tool) available at: https://wist.echo.nasa.gov/~wist/api/imswelcome/. Accessed 21 February 2011

  • Zhang XY, Friedl MA, Schaaf CB, Strahler AH, Liu Z (2005) Monitoring the response of vegetation phenology to precipitation in Africa by coupling MODIS and TRMM instruments. J Geophysical Res-Atmos 110, D12103. doi:10.1029/2004JD005263

    Article  Google Scholar 

Download references

Acknowledgments

This study was funded by the German Federal Ministry of Education and Research (BMBF) within the project “Urban Agriculture as an Integrative Factor of Climate-Optimised Urban Development, Casablanca” (grant number 01LG0504A1). This project is part of the megacity research programme “Research for the Sustainable Development of Megacities of Tomorrow, Focus: Energy- and climate-efficient structures in urban growth centres”. We thank Mr. Christopher Brown for revisions and advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Otto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Otto, M., Höpfner, C., Curio, J. et al. Assessing vegetation response to precipitation in northwest Morocco during the last decade: an application of MODIS NDVI and high resolution reanalysis data. Theor Appl Climatol 123, 23–41 (2016). https://doi.org/10.1007/s00704-014-1344-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-014-1344-3

Keywords

Navigation