Skip to main content
Log in

A large sample investigation of temporal scale-invariance in rainfall over the tropical urban island of Singapore

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

Scaling behavior of rainfall time series is characterized using monofractal, spectral, and multifractal frameworks. The study analyzed temporal scale-invariance of rainfall in the tropical island of Singapore using a large dataset comprising 31 years of hourly and 3 years of 1-min rainfall measurements. First, the rainfall time series is transformed into an occurrence–non-occurrence binary series, and its scaling behavior is analyzed using box-counting analysis. The results indicated that the rainfall support displays fractal structure, but within a limited range of scales. The rainfall support has a fractal dimension (D f ) of 0.56 for scales ranging from 1 min to 1.5 h and a D f of 0.37 from 1.5 h to 1.5 days. The results further showed that the fractal dimension decreases with the increase in the threshold used to define binary series. Spectral analysis carried out on the rainfall time series and the corresponding binary series showed three distinct scaling regimes of 4 min–2 h, 2–24 h, and 24 h–1 month. In all the scaling regimes, the spectral exponents for the rainfall series were smaller than those for the binary series. The study then investigated the presence of multiscaling behavior in rainfall time series using moment scaling analysis. The results confirmed that the rainfall fluctuations display a multiscaling structure, which was modeled in the framework of universal multifractals. The results from this study would not only improve our understanding of the temporal rainfall structure in Singapore and the surrounding Maritime Continent but also help us build and parameterize parsimonious models and statistical downscaling techniques for rainfall in this region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Breslin M, Belward J (1999) Fractal dimensions for rainfall time series. Math Comput Simulat 48 (4):437–446

    Article  Google Scholar 

  • Chatterjea K (1998) The impact of tropical rainstorms on sediment and runoff generation from bare and grasscovered surfaces: a plot study from Singapore. Land Degrad Dev 9(2):143–157

    Article  Google Scholar 

  • Chatterjea K (2011) Severe wet spells and vulnerability of urban slopes: case of Singapore. Nat Hazards 56(1):1–18

    Article  Google Scholar 

  • Chia LS, Foong FS (1991) Climate and weather. In: Tay DBH, Chia L S, Rahman A (eds) The biophysical environment of Singapore. National University of Singapore Press, pp 13–49

  • De Montera L, Barthès L, Mallet C, Golé P (2009) The effect of rain—no rain intermittency on the estimation of the universal multifractals model parameters. J Hydrometeorol 10(2):493– 506

    Article  Google Scholar 

  • Deidda R, Benzi R, Siccardi F (1999) Multifractal modeling of anomalous scaling laws in rainfall. Water Resour Res 35(6):1853–1867

    Article  Google Scholar 

  • Deidda R, Badas M, Piga E (2004) Space-time scaling in high intensity tropical ocean global atmosphere coupled ocean-atmosphere response experiment TOGA-COARE storms. Water Resour Res 40(2):W02,506

    Google Scholar 

  • Falconer K (2004) Fractal geometry: mathematical foundations and applications, Wiley

  • Fong M (2012) The weather and climate of Singapore, Meteorological Service Singapore, Singapore

  • Fraedrich K, Larnder C (1993) Scaling regimes of composite rainfall time series. Tellus 45(4):289–298

    Article  Google Scholar 

  • Gan TY, Wang Q, Seneka M (2002) Correlation dimensions of climate subsystems and their geographic variability. J Geophys Res 107(D23):ACL23–1–ACL23–17

    Google Scholar 

  • Gan TY, Gobena AK, Wang Q (2007) Precipitation of southwestern Canada: wavelet, scaling, multifractal analysis, and teleconnection to climate anomalies. J Geophys Res 112(D10):D10,110

    Article  Google Scholar 

  • Gaume E, Mouhous N, Andrieu H (2007) Rainfall stochastic disaggregation models: calibration and validation of a multiplicative cascade model. Adv Water Res 30(5):1301–1319

    Article  Google Scholar 

  • Gebremichael M, Vivoni ER, Watts CJ, Rodríguez JC (2007) Submesoscale spatiotemporal variability of North American monsoon rainfall over complex terrain. J Climate 20(9):1751–1773

    Article  Google Scholar 

  • Gebremichael M, Krajewski WF, Over T, Takayabu Y, Arkin P, Katayama M (2008) Scaling of tropical rainfall as observed by TRMM precipitation radar. Atmos Res 88(3-4):337–354

    Article  Google Scholar 

  • Georgakakos KP, Carsteanu A, Sturdevant-Rees P, Cramer J (1994) Observation and analysis of midwestern rain rates. J Appl Meteorol 33(12):1433–1444

    Article  Google Scholar 

  • Ghanmi H, Bargaoui Z, Mallet C (2013) Investigation of the fractal dimension of rainfall occurrence in a semi-arid Mediterranean climate. Hydrol Sci J 58(3):483–497

    Article  Google Scholar 

  • Islam S, Bras R, Rodriguez-Iturbe I (1993) A possible explanation for low correlation dimension estimates for the atmosphere. J Appl Meteor 32(2):203–208

    Article  Google Scholar 

  • Kiely G, Ivanova K (1999) Multifractal analysis of hourly precipitation. Phys Chem Earth 24(7):781–786

    Article  Google Scholar 

  • Licznar P, Łomotowski J, Rupp DE (2011) Random cascade driven rainfall disaggregation for urban hydrology: an evaluation of six models and a new generator. Atmos Res 99(3–4):563–578

    Article  Google Scholar 

  • Lovejoy S (1982) Area-perimeter relation for rain and cloud areas. Science 216(4542):185–187

    Article  Google Scholar 

  • Lovejoy S, Mandelbrot B (1985) Fractal properties of rain, and a fractal model. Tellus 37(3):209–232

    Article  Google Scholar 

  • Lovejoy S, Schertzer D (2007) Scale, scaling and multifractals in geophysics: twenty years on. In: Tsonis A, Elsner J (eds) Nonlinear Dynamics in Geosciences. Springer, New York, pp 311–337

    Chapter  Google Scholar 

  • Lovejoy S, Schertzer D, Tsonis A (1987) Functional box-counting and multiple elliptical dimensions in rain. Science 235(4792):1036–1038

    Article  Google Scholar 

  • Lovejoy S, Schertzer D, Allaire V (2008) The remarkable wide range spatial scaling of TRMM precipitation. Atmos Res 90(1):10–32

    Article  Google Scholar 

  • Lu Y, Qin XS (2014) Multisite rainfall downscaling and disaggregation in a tropical urban area. J Hydrol 509:55–65

    Article  Google Scholar 

  • Mandapaka PV, Qin X (2013) Analysis and characterization of probability distribution and small-scale spatial variability of rainfall in Singapore using a dense gauge network. J Appl Meteor Climatol 52(12):2781–2796

    Article  Google Scholar 

  • Mandapaka PV, Lewandowski PA, Eichinger WE, Krajewski WF (2009) Multiscaling analysis of high resolution space-time lidar-rainfall. Nonlinear Process Geophys 16(5):579–598

    Article  Google Scholar 

  • Mandapaka PV, Villarini G, Seo BC, Krajewski WF (2010) Effect of radar-rainfall uncertainties on the spatial characterization of rainfall events. J Geophys Res 115(D17):D17,110. doi:10.1029/2009JD013366

    Article  Google Scholar 

  • Mandelbrot BB (1983) The fractal geometry of nature, Times Books

  • Mascaro G, Deidda R, Hellies M (2013) On the nature of rainfall intermittency as revealed by different metrics and sampling approaches. Hydrol Earth Syst Sci 17(1):355–369. doi:10.5194/hess-17-355-2013

    Article  Google Scholar 

  • Mascaro G, Vivoni ER, Gochis DJ, Watts CJ, Rodriguez JC (2014) Temporal downscaling and statistical analysis of rainfall across a topographic transect in Northwest Mexico. J Appl Meteor 53(4):910–927. doi:10.1175/JAMC-D-13-0330.1

    Article  Google Scholar 

  • Molini A, Katul GG, Porporato A (2009) Revisiting rainfall clustering and intermittency across different climatic regimes. Water Resour Res 45:W11,403

    Google Scholar 

  • Nykanen D (2008) Linkages between orographic forcing and the scaling properties of convective rainfall in mountainous regions. J Hydrometeorol 9(3):327–347

    Article  Google Scholar 

  • Nykanen D, Harris D (2003) Orographic influences on the multiscale statistical properties of precipitation. J Geophys Res 108(D8):8381

    Article  Google Scholar 

  • Olsson J (1995) Limits and characteristics of the multifractal behavior of a high-resolution rainfall time series. NPG 2(1):23–29

  • Olsson J, Niemczynowicz J, Berndtsson R, Larson M (1992) An analysis of the rainfall time structure by box counting—some practical implications. J Hydrol 137(1):261–277

    Article  Google Scholar 

  • Olsson J, Niemczynowicz J, Berndtsson R (1993) Fractal analysis of high-resolution rainfall time series. J Geophys Res 98(D12):23,265–23,274

    Article  Google Scholar 

  • Over T, Gupta V (1996) A space-time theory of mesoscale rainfall using random cascades. J Geophys Res 101(26):319–26,331

    Google Scholar 

  • Pathirana A, Herath S, Yamada T (2003) Estimating rainfall distributions at high temporal resolutions using a multifractal model. Hydrol Earth Syst Sci 7:668–679

    Article  Google Scholar 

  • Purdy J, Harris D, Austin G, Seed A, Gray W (2001) A case study of orographic rainfall processes incorporating multiscaling characterization techniques. J Geophys Res 106(D8):7837– 7845

    Article  Google Scholar 

  • Renyi A (1970) Probability theory. Amsterdam, North-Holland

    Google Scholar 

  • Rubalcaba J (1997) Fractal analysis of climatic data: annual precipitation records in Spain. Theor Appl Climatol 56(1-2):83–87

    Article  Google Scholar 

  • Rysman JF, Verrier S, Lemaître Y, Moreau E (2013) Space-time variability of the rainfall over the Western Mediterranean region: a statistical analysis

  • Schertzer D, Lovejoy S (1987) Physical modeling and analysis of rain and clouds by anisotropic scaling multiplicative processes. J Geophys Res 92(D8):9693–9714

    Article  Google Scholar 

  • Schertzer D, Lovejoy S (1997) Universal multifractals do exist!: Comments on “a statistical analysis of mesoscale rainfall as a random cascade”. J Appl Meteorol 36(9):1296–1303

    Article  Google Scholar 

  • Schmitt F, Vannitsem S, Barbosa A (1998) Modeling of rainfall time series using two-state renewal processes and multifractals. J Geophys Res 103(D18):23,181–23,193

    Article  Google Scholar 

  • Sivakumar B (2000a) Fractal analysis of rainfall observed in two different climatic regions. Hydrol Sci J 45(5):727–738

    Article  Google Scholar 

  • Sivakumar B (2000b) A preliminary investigation on the scaling behaviour of rainfall observed in two different climates. Hydrol Sci J 45(2):203–219

    Article  Google Scholar 

  • Svensson C, Olsson J, Berndtsson R (1996) Multifractal properties of daily rainfall in two different climates. Water Resour Res 32(8):2463–2472

    Article  Google Scholar 

  • Tessier Y, Lovejoy S, Schertzer D (1993) Universal multifractals: theory and observations for rain and clouds. J Appl Meteorol 32(2):223–250

    Article  Google Scholar 

  • Venugopal V, Foufoula-Georgiou E, Sapozhnikov V (1999) Evidence of dynamic scaling in space-time rainfall. J Geophys Res 104(D24):31,599–31,610

    Article  Google Scholar 

  • Venugopal V, Roux S, Foufoula-Georgiou E, Arneodo A (2006) Revisiting multifractality of high-resolution temporal rainfall using a wavelet-based formalism. Water Resour Res 42(6)

  • Verrier S, Mallet C, Barthès L (2011) Multiscaling properties of rain in the time domain, taking into account rain support biases. J Geophys Res 116(D20):D20,119. doi:10.1029/2011JD015719

    Article  Google Scholar 

  • Watts IEM (1955) Rainfall of Singapore island. Singapore J Trop Geo 7:1–71

    Google Scholar 

  • Yonghe L, Kexin Z, Wanchang Z, Yuehong S, Hongqin P, Jinming F (2013) Multifractal analysis of 1-min summer rainfall time series from a monsoonal watershed in eastern China. Theor Appl Climatol 111(1-2):37–50. doi:10.1007/s00704-012-0627-9

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by Singapores Ministry of Education (MOE) AcRF Tier 2 (M4020182.030) project. The authors appreciate the support from the National Environmental Agency of Singapore for providing rain gauge data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaosheng Qin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mandapaka, P.V., Qin, X. A large sample investigation of temporal scale-invariance in rainfall over the tropical urban island of Singapore. Theor Appl Climatol 122, 685–697 (2015). https://doi.org/10.1007/s00704-014-1317-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-014-1317-6

Keywords

Navigation