Skip to main content
Log in

Modeling monthly mean air temperature for Brazil

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

Air temperature is one of the main weather variables influencing agriculture around the world. Its availability, however, is a concern, mainly in Brazil where the weather stations are more concentrated on the coastal regions of the country. Therefore, the present study had as an objective to develop models for estimating monthly and annual mean air temperature for the Brazilian territory using multiple regression and geographic information system techniques. Temperature data from 2,400 stations distributed across the Brazilian territory were used, 1,800 to develop the equations and 600 for validating them, as well as their geographical coordinates and altitude as independent variables for the models. A total of 39 models were developed, relating the dependent variables maximum, mean, and minimum air temperatures (monthly and annual) to the independent variables latitude, longitude, altitude, and their combinations. All regression models were statistically significant (α ≤ 0.01). The monthly and annual temperature models presented determination coefficients between 0.54 and 0.96. We obtained an overall spatial correlation higher than 0.9 between the models proposed and the 16 major models already published for some Brazilian regions, considering a total of 3.67 × 108 pixels evaluated. Our national temperature models are recommended to predict air temperature in all Brazilian territories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Addinsoft (2011) XLSTAT. Statistical software to MS Excel

  • Alfonsi RR, Pinto HS, Pedro Junior MJ (1974) Estimation of the normal monthly and annual mean temperatures of Goias (BR) as a function of altitude and latitude. Cad Cienc Terra 45:1–6

    Google Scholar 

  • Allen DW (2011) Getting to know ArcGIS ModelBuilder. ESRI Press, Redlands

    Google Scholar 

  • Almeida HA, Sá DF (1984) Estimation of mean, maximum and minimum monthly and annual temperatures in southeast of Bahia. Rev Theobroma 14:135–142

    Google Scholar 

  • Alvares CA, Gonçalves JLM, Vieira SR, Silva CR, Franciscatte W (2011) Spatial variability of physical and chemical attributes of some forest soils in southeastern of Brazil. Sci Agric 68:697–705

    Article  Google Scholar 

  • Andrade KM (2005) Climatology and behavior of frontal systems in South America. Dissertation, National Institute for Space Research, Brazil (in Portuguese)

  • Bardin L, Pedro Junior MJ, Moraes JFL (2010) Estimation of maximum and minimum air temperatures for the “Circuito das Frutas” region (São Paulo State, Brazil). Rev Bras Eng Agric Ambient 14:618–624

    Article  Google Scholar 

  • Barros V, Grimm AM, Doyle ME (2002) Relationship between temperature and circulation in southeastern South America and its influence from El Niño and La Niña events. J Meteor Soc Japan 80:21–32

    Article  Google Scholar 

  • Boi P, Fiori M, Canu S (2011) High spatial resolution interpolation of monthly temperatures of Sardinia. Meteorol Appl 18:475–482

    Article  Google Scholar 

  • Brasil (1992) Climatological normal (1961–1990). SPI/EMBRAPA, Brasília

    Google Scholar 

  • Brown LH, Cocheme JA (1969) Study of the agroclimatology of the highlands of Eastern Africa. FAO—FAO/Unesco/Wmo Interagency Project on Agroclimatology, Rome

    Google Scholar 

  • Brugnaro R, Bacha CJC (2009) Analysis of agricultural participation in Brazil GDP from 1986 to 2004. Estud Econ 39:127–159

    Article  Google Scholar 

  • Buriol GA, Estefanel V, Ferreira M, Pinto HS (1973) Estimation of monthly and annual maximum temperatures of Rio Grande do Sul state. Rev Cent Cienc Rurais 3:131–150

    Google Scholar 

  • Buriol GA, Ferreira M, Estefanel V, Pignataro IAB (1974) Estimation of monthly and annual maximum temperatures of Santa Catarina state. Rev Cent Cienc Rurais 4:81–102

    Google Scholar 

  • Burrough PA, McDonnell RA (1998) Principles of geographical information systems. Oxford University Press, New York

    Google Scholar 

  • Bussab WO (1986) Análise de variância e de regressão. Atual, São Paulo

    Google Scholar 

  • Calvo JC, Gregory JD (1994) Predicting monthly and annual air temperature characteristics in North Carolina. J Applied Meteorol 33:490–499

    Article  Google Scholar 

  • Camargo AP, Sentelhas PC (1997) Performance evaluation of different potential evapotranspiration estimating methods in the state of São Paulo, Brazil. Rev Bras Agrometeorol 5:89–97

    Google Scholar 

  • Cavalcanti IFA, Kousky VE (2009) Cold fronts on Brazil. In: Cavalcanti IFA, Ferreira NJ, Silva MGAJ, Dias MAFS (eds) Weather and climate in Brazil. Oficina de Textos, São Paulo, pp 135–147

    Google Scholar 

  • Chuanyan Z, Zhongre N, Guodong C (2005) Methods for modeling of temporal and spatial distribution of air temperature at landscape scale in the southern Qilian Mountains, China. Ecol Model 189:209–220

    Article  Google Scholar 

  • Claps P, Giordano P, Laguardia G (2008) Spatial distribution of the average air temperatures in Italy: quantitative analysis. J Hydrol Eng 13:242–24

    Article  Google Scholar 

  • Coelho DT, Sediyama GC, Vieira M (1973) Estimation of monthly and annual mean temperatures in Minas Gerais state. Rev Ceres 20:455–459

    Google Scholar 

  • Dias MAFS, Silva MGAJ (2009) Understanding weather and climate. In: Cavalcanti IFA, Ferreira NJ, Silva MGAJ, Dias MAFS (eds) Weather and climate in Brazil. Oficina de Textos, São Paulo, pp 15–21

    Google Scholar 

  • Draper N, Smith H (1981) Applied regression analysis, 2nd edn. Wiley, New York

    Google Scholar 

  • Driscoll DM, Yee Fong JM (1992) Continentality: a basic climatic parameter re-examined. Int J Climatol 12:185–192

    Article  Google Scholar 

  • ESRI (Environmental Systems Research Institute, Inc.) (2010) ArcGIS 10

  • Estefanel V, Ferreira M, Buriol GA, Pinto HS (1973) Estimation of monthly and annual minimum temperatures of Rio Grande do Sul state. Rev Cent Cienc Rurais 3:1–20

    Google Scholar 

  • FAO (2001) FAOClim 2.0: Agroclimatic Database CD-ROM+ user’s manual. Environment and Natural Resources Working paper no. 5, 72 pp

  • Farr TG, Kobrick M (2000) Shuttle radar topography mission produces a wealth of data. Am Geophys Union Eos 81:583–585

    Article  Google Scholar 

  • Feitoza LR, Scárdua JA, Sediyama GC, Oliveira LM, Valle SS (1979) Estimation of monthly and annual mean temperatures of Espírito Santo state. Rev Cent Cienc Rurais 9:279–291

    Google Scholar 

  • Feitoza LR, Scárdua JA, Sediyama GC, Valle SS (1980a) Estimation of monthly and annual minimum temperatures of Espírito Santo state. Rev Cent Cienc Rurais 10:15–24

    Google Scholar 

  • Feitoza LR, Scárdua JA, Sediyama GC, Valle SS (1980b) Estimation of monthly and annual maximum temperatures of Espírito Santo state. Rev Cent Cienc Rurais 10:25–32

    Google Scholar 

  • Ferreira M, Buriol GA, Estefanel V, Pinto HS (1971) Estimation of monthly and annual mean temperatures of Rio Grande do Sul state. Rev Cent Cienc Rurais 1:21–52

    Google Scholar 

  • Ferreira M, Buriol GA, Pignataro IAB, Estefanel V (1974) Estimation of monthly and annual mean temperatures of Santa Catarina state. Rev Cent Cienc Rurais 4:19–38

    Google Scholar 

  • Ferreira WPM, Valladares GS, Hott MC (2006) Estimations of the monthly average air temperature for Minas Gerais and Pará states by the application of digital elevation models. Eng Agric 14:293–303

    Google Scholar 

  • Garreaud RD (2000) Cold air incursions over subtropical South America: mean structure and dynamics. Mon Wea Rev 128:2544–2559

    Article  Google Scholar 

  • Gómez JD, Etchevers JD, Monterroso AI, Gay C, Campo J, Martínez M (2008) Spatial estimation of mean temperature and precipitation in areas of scarce meteorological information. Atmos 21:35–56

    Google Scholar 

  • Goodale C, Aber JD, Ollinger SV (1998) Mapping monthly precipitation, temperature, and solar radiation for Ireland with polynomial regression and a digital elevation model. Clim Res 10:35–49

    Article  Google Scholar 

  • Gouvas MA, Sakellariou NK, Kambezidis HD (2011) Estimation of the monthly and annual mean maximum and mean minimum air temperature values in Greece. Meteorol Atmos Phys 110:143–149

    Article  Google Scholar 

  • Guan BT, Hsu H, Wey T, Tsao L (2009) Modeling monthly mean temperatures for the mountain regions of Taiwan by generalized additive models. Agric For Meteorol 149:281–290

    Article  Google Scholar 

  • Guerra PAG (1988) Geoestatística operacional. Brasília: Dnpm

  • Hamada E, Ghini R, Fernandes JL, Pedro Júnior MJ, Rossi P (2008) Spatial and temporal variability of leaf wetness duration in the State of São Paulo, Brazil. Sci Agric 65:26–31

    Article  Google Scholar 

  • Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978

    Article  Google Scholar 

  • IBGE (2007) Brazil’s municipal grid digital—2007. Rio de Janeiro: IBGE. ftp://geoftp.ibge.gov.br/mapas/malhas_digitais/municipio_2007. Accessed 14 Dec 2008

  • IBGE (Instituto Brasileiro de Geografia e Estatística). Resolução da Presidência do IBGE de no. 5 (R.PR-5/02) (Publicado no Diário Oficial da União No. 198—Seção 1, de 11/10/2002, pp 48–65)

  • Jarvis A, Reuter HI, Nelson A, Guevara E (2008) Hole-filled SRTM for the globe version 4. The CGIAR-CSI SRTM 90 m database. http://srtm.csi.cgiar.org. Accessed 6 Mar 2010

  • Jeffree EP, Jeffree CE (1994) Temperature and the biogeographical distributions of species. Funct Ecol 8:640–650

    Article  Google Scholar 

  • Kousky VE (1979) Frontal influences on northeast Brazil. Mon Wea Rev 107:1140–1153

    Article  Google Scholar 

  • Kurtzman D, Kadmon R (1999) Mapping of temperature variables in Israel: a comparison of different interpolation methods. Clim Res 13:33–43

    Article  Google Scholar 

  • Lanzante JR (1996) Resistant, robust and non-parametric techniques for the analysis of climate data: theory and examples, including applications to historical radiosonde station data. Int J Climatol 16:1197–1226

    Article  Google Scholar 

  • Larcher W (2000) Plant ecophysiology. Rima, São Carlos

    Google Scholar 

  • Lennon JJ, Turner JRG (1995) Predicting the spatial distribution of climate: temperature in Great Britain. J Anim Ecol 64:370–392

    Article  Google Scholar 

  • Lima MG, Ribeiro VQ (1998) Estimation of the air temperature for the state of Piauí, Brazil. Rev Bras Agrometeorol 6:221–227

    Google Scholar 

  • Marquinez J, Lastra J, Garcia P (2003) Estimation models for precipitation in mountainous regions: the use of GIS and multivariate analysis. J Hydrol 270:1–11

    Article  Google Scholar 

  • Mavi HS, Tupper GJ (2004) Agrometeorology: principles and applications of climate studies in agriculture. Food Product Press, New York

    Google Scholar 

  • Medeiros SS, Cecílio RA, Melo Júnior JCF, Silva Junior JLC (2005) Estimation and spatialization of minimum, mean and maximum air temperatures for the northeast region of Brazil. Rev Bras Eng Agric Ambient 9:247–255

    Article  Google Scholar 

  • Mello CR, Silva AM (2009) Statistical modeling of monthly, annual and dry season mean precipitation for the state of Minas Gerais. Rev Bras Eng Agric Ambient 13:68–74

    Article  Google Scholar 

  • Mota FS (1975) Agricultural meteorology. Nobel, São Paulo

    Google Scholar 

  • Mues V, Jansen M, Sloboda B, Radler K, Saborowski J (2002) Regionalization of climatic elements in Lower Saxony. In: Jansen M, Judas M, Saborowski J (eds) Spatial modelling in forest ecology and management—a case study. Springer, Berlin, pp 41–67

    Chapter  Google Scholar 

  • Myung IJ, Pitt MA, Kim W (2003) Model evaluation, testing and selection. Ohio State University, Columbus

    Google Scholar 

  • Nimer E (1979) Climatology of Brazil. IBGE, Rio de Janeiro

    Google Scholar 

  • Ninyerola M, Pons X, Roure JM (2000) A methodological approach of climatological modelling of air temperature and precipitation through GIS techniques. Int J Climatol 20:1823–1841

    Article  Google Scholar 

  • Oliveira Neto SN, Reis GG, Reis MGF, Leite HG, Costa JMN (2002) Estimating the minimum, medium and maximum temperatures in Brazilian territory located between 16 and 24° South latitude and 48 and 60° West longitude. Eng Agric 10:8–17

    Google Scholar 

  • Ollinger SV, Aber JD, Federer CA, Lovett GM, Ellis JM (1995). Modeling physical and chemical climate of the northeastern United States for a geographic information system. USDA Forest Service NE General Technical Report, Radnor, 191, pp 1–30

  • Ormsby T, Napoleon E, Burke R, Groessl C, Bowden L (2010) Getting to know ArcGIS Desktop: updated for ArcGIS 10, 2nd edn. ESRI Press, Redlands

    Google Scholar 

  • Pedro Junior MJ, Mello MHA, Ortolani A, Alfonsi RR, Sentelhas PC (1991) Estimation of monthly minum and maximum temperatures for the state of Sao Paulo. Campinas. Instituto Agronômico, p 11 (Boletim Técnico n. 142)

  • Peel MC, Finlayson BL, Mcmahon TA (2007) Updated world map of the Koppen–Geiger climate classification. Hydrol Earth Syst Sci 11:1633–1644

    Article  Google Scholar 

  • Pereira AR, Angelocci LR, Sentelhas PC (2002) Agrometeorology: fundamentals and practical applications. Livraria e Editora Agropecuária, Guaíba

    Google Scholar 

  • Pezzopane JRM, Santos EA, Eleutério MM, Reis EF, Santos AR (2004) Spatial distribution of air temperature in the state of Espirito Santo. Rev Bras Agrometeorol 12:151–158

    Google Scholar 

  • Pinto HS, Alfonsi RR (1974) Estimation of mean, maximum and minimum monthly temperatures of Paraná state, as a function of altitude and latitude. Cad Cienc Terra 52:1–28

    Google Scholar 

  • Pinto HS, Ortalani AA, Alfonsi RR (1972) Estimated average monthly temperatures in the state of Sao Paulo as a function of altitude and latitude. Cad Cienc Terra 23:1–20

    Google Scholar 

  • Ranhao S, Baiping Z, Jing T (2008) A multivariate regression model for predicting precipitation in the Daqing Mountains. Mt Res Dev 28:318–325

    Article  Google Scholar 

  • Raven PH, Evert RF, Eichhorn SE (2007) Biology of plants, 7th edn. Guanabara Koogan SA, Rio de Janeiro

    Google Scholar 

  • Rawlings JO, Pantula SG, Dickey DA (1998) Applied regression analysis: a research tool, 2nd edn. Springer, New York

    Book  Google Scholar 

  • Rizzini CT (1997) Treaty of phytogeography in Brazil: ecological, sociological and floristic aspects, 2nd edn. Âmbito Cultural Edições, Rio de Janeiro

    Google Scholar 

  • Robertson GP (2008) GS+: Geostatistics for the Environmental Sciences. Gamma Design Software, Michigan

    Google Scholar 

  • Rodriguez-lado L, Sparovek G, Vidal-Torrado P, Dourado-Neto D, Macías-Vásquez F (2007) Modelling air temperature for the state of São Paulo, Brazil. Sci Agric 64:460–467

    Article  Google Scholar 

  • Ross JLS (1989) Units morphosculptural in Brazil: a new proposal for classification of Brazilian relief. Proceedings of the Symposium of Geography Applied Physics 3. Nova Friburgo, UFRJ, pp 195–207

  • Rusticucci M (2011) Update on the CLARIS Project and other network issues in South America. In: Atmospheric Observation Panel for Climate, 16. WMO/IOC/UNEP/ICSU, Geneva, Anais, Switzerland, pp 1–16

  • Schmidt-Nielsen K (2010) Animal physiology: adaptation and environment, 5th edn. Editora Santos, São Paulo

    Google Scholar 

  • Sediyama GC, Melo Júnior JCF (1998) Mathematical models for the estimation of the monthly mean maximum, minimum and annual air temperature of the state of Minas Gerais. Eng Agric 6:57–61

    Google Scholar 

  • Setzer J (1946) Contribution to the study of climate in the state of Sao Paulo. Escolas Profissionais Salesianas, São Paulo

    Google Scholar 

  • Shapiro SS, Wilk MB (1965) An analysis of variance test for normality: complete samples. Biometrika 52:591–611

    Google Scholar 

  • Soares A (2006) Geoestatística para as ciências da terra e do ambiente. Lisboa: IST Press

  • Sparovek G, Jong VAN Lier Q, Dourado Neto D (2007) Computer assisted Koeppen climate classification: a case study for Brazil. Int J Climatol 27:257–266

    Article  Google Scholar 

  • Taiz L, Zeiger E (2009) Plant physiology, 4th edn. Artmed, Porto Alegre

    Google Scholar 

  • Theobald DM (2007) GIS concepts and ArcGIS methods, 3rd edn. Conservation Planning Technologies, Fort Collins

    Google Scholar 

  • Tomlin CD (1990) Geographic information systems and cartographic modelling. Prentice Hall, Englewood Cliffs

    Google Scholar 

  • Valeriano MM, Picini AG (2000) Use of geographic information system to generate maps of mean monthly temperature of the state of Sao Paulo. Rev Bras Agrometeorol 8:255–262

    Google Scholar 

  • Varejão-Silva MA (2006) Meteorology and climatology. Recife, Brazil

    Google Scholar 

  • Willmott CJ, Ackleson SG, Davis RE, Feddema JJ, Klink KM, Legates DR, O’Donnell J, Rowe CM (1985) Statistics for the evaluation and comparison of models. J Geophys Res 90:8995–9005

    Article  Google Scholar 

  • Willmott CJ, Robeson SM, Matsuura K (2012) A refined index of model performance. Int J Climatol 32:2088–2094. doi:10.1002/joc.2419

    Article  Google Scholar 

  • WMO (World Meteorological Organization) (1994) Guide to hydrological practices: data acquisition and processing, analysis, forecasting and other applications, 5th edn. WMO-No. 168, Geneva

  • Zheng XG, Basher RE (1996) Spatial modelling of New Zealand temperature normals. Int J Climatol 16:307–319

    Article  Google Scholar 

Download references

Acknowledgments

To São Paulo Research Foundation - FAPESP (no. 2008/05744-0) for the scholarship given to the first author. We thank the data provided by National Institute of Meteorology (INMET). The study had FPC and IPEF support. The ideas of doing this study emerged in 2005 from the first author's conversations (when he was still an undergraduate student) with Marcio Morisson Valeriano (National Institute for Space Research). Thereafter, in 2010, during his visit to North Caroline State University (as a Ph.D. student) was that the study took shape from his great conversations with the co-authors. All the 39 temperature models were spatialized and their maps (PDF format) are available for download at http://ipef.br/geodatabase.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clayton Alcarde Alvares.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alvares, C.A., Stape, J.L., Sentelhas, P.C. et al. Modeling monthly mean air temperature for Brazil. Theor Appl Climatol 113, 407–427 (2013). https://doi.org/10.1007/s00704-012-0796-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-012-0796-6

Keywords

Navigation