Skip to main content

Advertisement

Log in

Multivariate analysis applied to monthly rainfall over Rio de Janeiro state, Brazil

  • Original Paper
  • Published:
Meteorology and Atmospheric Physics Aims and scope Submit manuscript

Abstract

Spatial and temporal patterns of rainfall were identified over the state of Rio de Janeiro, southeast Brazil. The proximity to the coast and the complex topography create great diversity of rainfall over space and time. The dataset consisted of time series (1967–2013) of monthly rainfall over 100 meteorological stations. Clustering analysis made it possible to divide the stations into six groups (G1, G2, G3, G4, G5 and G6) with similar rainfall spatio-temporal patterns. A linear regression model was applied to a time series and a reference. The reference series was calculated from the average rainfall within a group, using nearby stations with higher correlation (Pearson). Based on t-test (p < 0.05) all stations had a linear spatiotemporal trend. According to the clustering analysis, the first group (G1) contains stations located over the coastal lowlands and also over the ocean facing area of Serra do Mar (Sea ridge), a 1500 km long mountain range over the coastal Southeastern Brazil. The second group (G2) contains stations over all the state, from Serra da Mantiqueira (Mantiqueira Mountains) and Costa Verde (Green coast), to the south, up to stations in the Northern parts of the state. Group 3 (G3) contains stations in the highlands over the state (Serrana region), while group 4 (G4) has stations over the northern areas and the continent-facing side of Serra do Mar. The last two groups were formed with stations around Paraíba River (G5) and the metropolitan area of the city of Rio de Janeiro (G6). The driest months in all regions were June, July and August, while November, December and January were the rainiest months. Sharp transitions occurred when considering monthly accumulated rainfall: from January to February, and from February to March, likely associated with episodes of “veranicos”, i.e., periods of 4–15 days of duration with no rainfall.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ambrizzi T, Ferraz SET (2015) An objective criterion for determining the South Atlantic Convergence Zone. Front Environ Sci. doi:10.3389/fenvs.2015.00023

    Google Scholar 

  • ANA (2010) Agência Nacional de Águas. http://hidroweb.ana.gov.br. Accessed date 27 July 2010

  • André RGB, Marques VdS, Pinheiro FMA, Ferraudo AS (2008) Identificação de regiões pluviometricamente homogêneas no Estado do Rio de Janeiro, utilizando-se valores mensais. Rev Bras Meteorol 23(4):501–509. doi:10.1590/s0102-77862008000400009

    Article  Google Scholar 

  • Barbieri PRB (2007) Caracterização da Estação Chuvosa nas Regiões Sul e Sudeste do Brasil Associado com a Circulação Atmosférica. Masters Thesis, National Institute for Space Research (INPE), São José dos Campos, Brazil

  • Carvalho LMV, Jones C, Liebmann B (2004) The South Atlantic convergence zone: intensity, form, persistence, and relationships with intraseasonal to interannual activity and extreme rainfall. J Clim 17(1):88–108. doi:10.1175/1520-0442(2004)017<0088:Tsaczi>2.0.Co;2

    Article  Google Scholar 

  • Cruz ES, Carvalho DF, Ceddia MB, Antunes MAH, Aquino RM (2004) Ocorrência de veranicos no estado do Rio de Janeiro. Engenharia Agrícola 24(1):68–79. doi:10.1590/s0100-69162004000100009

    Article  Google Scholar 

  • Dereczynski CP, Oliveira JSd, Machado CO (2009) Climatologia da precipitação no município do Rio de Janeiro. Rev Bras Meteorol 24(1):24–38. doi:10.1590/s0102-77862009000100003

    Article  Google Scholar 

  • Development Core Team R (2011) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna 409 pp

    Google Scholar 

  • Everitt BS, Dunn G (1991) Applied multivariate analysis. Edward Arnold, London

    Google Scholar 

  • Ferreira NJ, Correia AA, Ramirez MCV (2004a) Synoptic scale features of the tropospheric circulation over tropical South America during the WETAMC TRMM/LBA experiment. Atmosfera 17(1):13–30

    Google Scholar 

  • Ferreira NJ, Sanches M, Silva Dias MAF (2004b) Composição da Zona de Convergência do Atlântico Sul em Períodos de El Niño e La Niña. Rev Bras Meteorol 19:89–98

    Google Scholar 

  • Gong X, Richman MB (1995) On the application of cluster analysis to growing season precipitation data in North America east of the rockies. J Clim 8(4):897–931. doi:10.1175/1520-0442(1995)008<0897:OTAOCA>2.0.CO;2

    Article  Google Scholar 

  • Jackson IJ, Weinand H (1995) Classification of tropical rainfall stations: a comparison of clustering techniques. Int J Climatol 15(9):985–994. doi:10.1002/joc.3370150905

    Article  Google Scholar 

  • Kamruzzaman M, Beecham S, Metcalfe AV (2011) Non-stationarity in rainfall and temperature in the Murray Darling Basin. Hydrol Process 25(10):1659–1675. doi:10.1002/hyp.7928

    Article  Google Scholar 

  • Kamruzzaman M, Beecham S, Metcalfe AV (2015) Changing patterns in rainfall extremes in South Australia. Theor Appl Clim. doi:10.1007/s00704-015-1667-8

    Google Scholar 

  • Kamruzzaman M, Beecham S, Metcalfe AV (2016) Estimation of trends in rainfall extremes with mixed effects models. Atmos Res 168:24–32. doi:10.1016/j.atmosres.2015.08.018

    Article  Google Scholar 

  • Kayano MT (1999) Southeastern pacific blocking episodes and their effects on the South American weather. Meteorol Atmos Phys 69(3–4):145–155. doi:10.1007/BF01030418

    Article  Google Scholar 

  • Keller Filho T, Zullo Junior J, Lima PRSdR (2006) Análise da transição entre dias secos e chuvosos por meio da cadeia de Markov de terceira ordem. Pesqu Agropecu Bras. doi:10.1590/s0100-204x2006000900001

    Google Scholar 

  • Kite G (1988) Frequency and Risk Analyses in Hydrology. Water Resourcers Publications, Littleton 257 pp

    Google Scholar 

  • Kodama Y (1992) Large-scale common features of subtropical precipitation zones (the Baiu frontal zone, the SPCZ, and the SACZ) Part I: characteristics of subtropical frontal zones. J Meteorol Soc Jpn 70(4):813–836

    Article  Google Scholar 

  • Kodama Y (1993) Large-scale common features of sub-tropical convergence zones (the Baiu frontal zone, the SPCZ, and the SACZ), Part II: conditions of the circulations for generating the STCZs. J Meteorol Soc Jpn 71:581–610

    Article  Google Scholar 

  • Lemos CF, Calbete N (1996) Sistemas Frontais que atuaram no litoral de 1987–1995. Climanalise Especial—Edição comemorativa de 10 anos

  • Lima KC, Satyamurty P, Fernández JPR (2009) Large-scale atmospheric conditions associated with heavy rainfall episodes in Southeast Brazil. Theor Appl Clim 101(1–2):121–135. doi:10.1007/s00704-009-0207-9

    Google Scholar 

  • Lyra GB, Garcia BIL, Piedade SMS, Sediyama GC, Sentelhas PC (2006) Regiões homogêneas e funções de distribuição de probabilidade da precipitação pluvial no estado de Táchira, Venezuela. Pesqu Agropecu Bras 41:202–215

    Article  Google Scholar 

  • Lyra GB, Oliveira-Júnior JF, Zeri M (2014) Cluster analysis applied to the spatial and temporal variability of monthly rainfall in Alagoas state, Northeast of Brazil. Int J Climatol 34:3546–3558. doi:10.1002/joc.3926

    Article  Google Scholar 

  • Machado RL, Ceddia MB, Carvalho DFd, Cruz ESd, Francelino MR (2010) Spatial variability of maximum annual daily rain under different return periods at the Rio de Janeiro state, Brazil. Bragantia 69:77–84. doi:10.1590/s0006-87052010000500009

    Article  Google Scholar 

  • Melo Júnior JCFd, Sediyama GC, Ferreira PA, Leal BG (2006) Determinação de regiões homogêneas quanto à distribuição de freqüência de chuvas no leste do Estado de Minas Gerais. Revista Brasileira de Engenharia Agrícola e Ambiental 10(2):408–416. doi:10.1590/s1415-43662006000200023

    Article  Google Scholar 

  • Mendes MCD, Trigo RM, Cavalcanti IFA, Dacamara CC (2005) Bloqueios Atmosféricos de 1960 a 2000 sobre o Oceano Pacífico Sul: impactos Climáticos e Mecanismos Físicos Associados. Rev Bras Meteorol 20(2):175–190

    Google Scholar 

  • Minuzzi RB, Sediyama GC, Barbosa EdM, Melo Júnior JCFd (2007) Climatologia do comportamento do período chuvoso da região sudeste do Brasil. Rev Bras Meteorol. doi:10.1590/s0102-77862007000300007

    Google Scholar 

  • Moura CRW, Escobar GCJ, Andrade KM (2013) Padrões de circulação em superfície e altitude associados a eventos de chuva intensa na Região Metropolitana do Rio de Janeiro. Rev Bras Meteorol 28(3):267–280. doi:10.1590/s0102-77862013000300004

    Article  Google Scholar 

  • Nimer E (1972) Climatologia da Região Sudeste do Brasil—Introdução a Climatologia Dinâmica. Revista Brasileira de Geografia 34:3–48

    Google Scholar 

  • Oliveira Júnior JF, Delgado RC, Gois G, Lannes A, Dias FO, Souza JC, Souza M (2014) Análise da Precipitação e sua Relação com Sistemas Meteorológicos em Seropédica. Rio de Janeiro. Floresta e Ambiente 21(2):140–149. doi:10.4322/floram.2014.030

    Article  Google Scholar 

  • Pandžić K (1988) Principal component analysis of precipitation in the Adriatic-Pannonian area of Yugoslavia. J Climatol 8(4):357–370. doi:10.1002/joc.3370080404

    Article  Google Scholar 

  • Ramos MC (2001) Divisive and hierarchical clustering techniques to analyse variability of rainfall distribution patterns in a Mediterranean region. Atmos Res 57(2):123–138. doi:10.1016/s0169-8095(01)00065-5

    Article  Google Scholar 

  • Reboita MS, Gan MA, Rocha RPd, Ambrizzi T (2010) Regimes de precipitação na América do Sul: uma revisão bibliográfica. Rev Bras Meteorol. doi:10.1590/s0102-77862010000200004

    Google Scholar 

  • Rosa MB, Satyamurty P (2003) Um Estudo da Atividade Convectiva no Verão Sobre o Vale do Paraíba Através do Radar Banda-S de São José dos Campos. Rev Bras Meteorol 18:196–206

    Google Scholar 

  • Sinclair MR (1996) A Climatology of Anticyclones and Blocking for the Southern Hemisphere. Mon Weather Rev 124(2):245–264. doi:10.1175/1520-0493(1996)124<0245:ACOAAB>2.0.CO;2

    Article  Google Scholar 

  • Unal Y, Kindap T, Karaca M (2003) Redefining the climate zones of Turkey using cluster analysis. Int J Climatol 23(9):1045–1055. doi:10.1002/Joc.910

    Article  Google Scholar 

  • Ward JH (1963) Hierarchical Grouping to Optimize an Objective Function. J Am Stat Assoc 58(301):236. doi:10.2307/2282967

    Article  Google Scholar 

  • Wiedenmann JM, Lupo AR, Mokhov II, Tikhonova EA (2002) The climatology of blocking anticyclones for the northern and southern hemispheres: block intensity as a diagnostic. J Clim 15(23):3459–3473. doi:10.1175/1520-0442(2002)015<3459:TCOBAF>2.0.CO;2

    Article  Google Scholar 

  • Wilks DS (1995) Statistical methods in the atmospheric sciences: an introduction, vol 59. Academic Press, San Diego 467 pp

    Book  Google Scholar 

  • Willems P (2013) Multidecadal oscillatory behaviour of rainfall extremes in Europe. Clim Change 120(4):931–944. doi:10.1007/s10584-013-0837-x

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Fundação Superintendência Estadual de Rios e Lagos (SERLA), Instituto Nacional de Meteorologia (INMET), Companhia de Pesquisa de Recursos Minerais (CPRM) and Light Serviços e Eletricidade (LIGHT) for providing the pluviometric data available at the Hidroweb system. The authors are grateful to Conselho Nacional de Desenvolvimento Científico (CNPq) for the financial support (Processes 483643/2011-4 and 454928/2012-2). We thank Gisleine Cunha Zeri for the helpful comments on the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo Zeri.

Additional information

Responsible Editor: M. T. Prtenjak.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Figure S1. Number of years of rainfall series for each station (TIFF 3036 kb)

Figure S2. Percentage (%) of missing data for each station (TIFF 2905 kb)

Figure S3. Map of regression coefficient β0 (intercept) (TIFF 1123 kb)

Figure S4. Map of standard deviation of regression coefficient β0 (TIFF 1115 kb)

Figure S5. Map of regression coefficient β1 (slope) (TIFF 1094 kb)

Figure S6. Map of standard deviation of regression coefficient β1 (TIFF 1087 kb)

Figure S7. Map of p-values calculated for regression coefficient β0 (TIFF 1080 kb)

Figure S8. Map showing t-test results for regression coefficient β0 (TIFF 1076 kb)

Figure S9. Map of p-values calculated for regression coefficient β1 (TIFF 1066 kb)

Figure S10. Map showing t-test results for regression coefficient β1 (TIFF 1102 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brito, T.T., Oliveira-Júnior, J.F., Lyra, G.B. et al. Multivariate analysis applied to monthly rainfall over Rio de Janeiro state, Brazil. Meteorol Atmos Phys 129, 469–478 (2017). https://doi.org/10.1007/s00703-016-0481-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00703-016-0481-x

Keywords

Navigation