Skip to main content
Log in

Comparative assessment of spatiotemporal snow cover changes and hydrological behavior of the Gilgit, Astore and Hunza River basins (Hindukush–Karakoram–Himalaya region, Pakistan)

  • Original Paper
  • Published:
Meteorology and Atmospheric Physics Aims and scope Submit manuscript

Abstract

The Upper Indus Basin (UIB), situated in the Himalaya–Karakoram–Hindukush (HKH) mountain ranges, is the major contributor to the supply of water for irrigation in Pakistan. Improved management of downstream water resources requires studying and comparing spatiotemporal changes in the snow cover and hydrological behavior of the river basins located in the HKH region. This study explored in detail the recent changes that have occurred in the Gilgit River basin (12,656 km2; western sub-basin of UIB), which is characterized by a mean catchment elevation of 4250 m above sea level (m ASL). The basin’s snow cover was monitored through the snow products provided by the MODIS satellite sensor, while analysis of its hydrological regime was supported by hydrological and climatic data recorded at different altitudes. The Gilgit basin findings were compared to those previously obtained for the lower-altitude Astore basin (mean catchment elevation = 4100 m ASL) and the higher-altitude Hunza basin (mean catchment elevation = 4650 m ASL). These three catchments were selected because of their different glacier coverage, contrasting area distribution at high altitudes and significant impact on the Upper Indus River flow. Almost 7, 5 and 33 % of the area of the Gilgit, Astore and Hunza basins, respectively, are situated above 5000 m ASL, and approximately 8, 6 and 25 %, respectively, are covered by glaciers. The UIB region was found to follow a stable or slightly increasing trend in snow coverage and had a discharge dominated by snow and glacier melt in its western (Hindukush–Karakoram), southern (Western-Himalaya) and northern (Central-Karakoram) sub-basins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Akhtar M, Ahmad N, Booij MJ (2008) The impact of climate change on the water resources of Hindukush–Karakorum–Himalaya region under different glacier coverage scenarios. J Hydrol 355:148–163. doi:10.1016/j.jhydrol.2008.03.015

    Article  Google Scholar 

  • Araghi A, Adamowski J, Nalley D, Malard J (2015) Using wavelet transforms to estimate surface temperature trends and dominant periodicities in Iran based on gridded reanalysis data. J Atmos Res 11:52–72

    Article  Google Scholar 

  • Arendt A et al (2015) Randolph glacier inventory—a dataset of global glacier outlines: version 5.0. Global Land Ice Measurements from Space, Boulder Colorado, USA. Digital Media

  • Archer D (2003) Contrasting hydrological regimes in the upper Indus Basin. J Hydrol 274:198–210. doi:10.1016/S0022-1694(02)00414-6

    Article  Google Scholar 

  • Archer D (2004) Hydrological implications of spatial and altitudinal variation in temperature in the upper Indus basin. Nord Hydrol 35:209–222

    Google Scholar 

  • Archer DR, Fowler HJ (2004) Spatial and temporal variations in precipitation in the Upper Indus Basin, global teleconnections and hydrological implications. Hydrol Earth Syst Sci 8:47–61. doi:10.5194/hess-8-47-2004

    Article  Google Scholar 

  • Archer DR, Forsythe N, Fowler HJ, Shah SM (2010) Sustainability of water resources management in the Indus Basin under changing climatic and socio economic conditions. Hydrol Earth Syst Sci HESS 14:1669–1680. doi:10.5194/hess-14-1669-2010

    Article  Google Scholar 

  • Berthier E, Arnaud Y, Kumar R, Ahmad S, Wagnon P, Chevallier P (2007) Remote sensing estimates of glacier mass balances in the Himachal Pradesh (Western Himalaya, India). Remote Sens Environ 108:327–338. doi:10.1016/j.rse.2006.11.017

    Article  Google Scholar 

  • Bolch T, Pieczonka T, Benn DI (2011) Multi-decadal mass loss of glaciers in the Everest area (Nepal Himalaya) derived from stereo imagery. Cryosphere 5:349–358. doi:10.5194/tc-5-349-2011

    Article  Google Scholar 

  • Bookhagen B, Burbank DW (2006) Topography, relief, and TRMM-derived rainfall variations along the Himalaya. Geophys Res Lett 33:L08405. doi:10.1029/2006GL026037

    Google Scholar 

  • Bookhagen B, Burbank DW (2010) Toward a complete Himalayan hydrological budget: spatiotemporal distribution of snowmelt and rainfall and their impact on river discharge. J Geophys Res 115:F03019. doi:10.1029/2009JF001426

    Article  Google Scholar 

  • Dimri AP, Chevuturi A (2014) Model sensitivity analysis study for western disturbances over the Himalayas. Meteorol Atmos Phys 123:155–180. doi:10.1007/s00703-013-0302-4

    Article  Google Scholar 

  • Dimri AP, Yasunari T, Wiltshire A, Kumar P, Mathison C, Ridley J, Jacob D (2013) Application of regional climate models to the Indian winter monsoon over the western Himalayas. Sci Total Environ 468–469(Supplement):S36–S47. doi:10.1016/j.scitotenv.2013.01.040

    Article  Google Scholar 

  • Førland EJ et al (1996) Manual for operational correction of Nordic precipitation data. DNMI, Oslo

    Google Scholar 

  • Forsythe N, Fowler H, Kilsby C, Archer D (2012a) Opportunities from remote sensing for supporting water resources management in village/valley scale catchments in the Upper Indus Basin. Water Resour Manag 26:845–871. doi:10.1007/s11269-011-9933-8

    Article  Google Scholar 

  • Forsythe N, Kilsby CG, Fowler HJ, Archer DR (2012b) Assessment of runoff sensitivity in the Upper Indus Basin to interannual climate variability and potential change using MODIS satellite data products. Mt Res Dev 32:16–29

    Article  Google Scholar 

  • Fowler HJ, Archer DR (2005) Hydro-climatological variability in the Upper Indus Basin and implications for water resources. In: Regional hydrological impacts of climatic change—impact assessment and decision making, Seventh IAHS Scientific Assembly at Foz do Iguaçu, Brazil, pp 131–138

  • Fowler HJ, Archer DR (2006) Conflicting signals of climatic change in the Upper Indus Basin. J Clim 19:4276–4293

    Article  Google Scholar 

  • Gardelle J, Berthier E, Arnaud Y (2012) Slight mass gain of Karakoram glaciers in the early twenty-first century. Nat Geosci 5:322–325. doi:10.1038/ngeo1450

    Article  Google Scholar 

  • Gardelle J, Berthier E, Arnaud Y, Kääb A (2013) Region-wide glacier mass balances over the Pamir-Karakoram-Himalaya during 1999–2011. Cryosphere 7:1263–1268. doi:10.5194/tc-7-1263-2013

    Article  Google Scholar 

  • Gilbert RO (1987) 16.5 Sen’s nonparametric estimator of slope. In: Statistical methods for environmental pollution monitoring. Wiley, New York, p 217–219

  • Guo W et al (2015) The second Chinese glacier inventory: data, methods and results. J Glaciol 61:357–372

    Article  Google Scholar 

  • Gupta RP, Haritashya UK, Singh P (2005) Mapping dry/wet snow cover in the Indian Himalayas using IRS multispectral imagery. Remote Sens Environ 97:458–469. doi:10.1016/j.rse.2005.05.010

    Article  Google Scholar 

  • Halbe J, Pahl-Wostl C, Sendzimir J, Adamowski J (2013) Towards adaptive and integrated management paradigms to meet the challenges of water governance. Water Sci Tech Water Supply 67:2651–2660

    Article  Google Scholar 

  • Hall DK, Riggs GA (2007) Accuracy assessment of the MODIS snow products. Hydrol Process 21:1534–1547. doi:10.1002/hyp.6715

    Article  Google Scholar 

  • Hall D, Riggs G, Salomonson VV (2006) MODIS/Terra Snow Cover 8-day L3 Global 500 m Grid V005, [March 2000 to December 2012]. National Snow and Ice Data Center, Boulder. Digital media. http://nsidc.org/data/mod10a2v5.html. Accessed 15 Jan 2013

  • Hartmann DL et al (2013) Observations: atmosphere and surface. In: Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of Working Group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

  • Hasson S, Lucarini V, Khan MR, Petitta M, Bolch T, Gioli G (2014) Early 21st century snow cover state over the western river basins of the Indus River system. Hydrol Earth Syst Sci 18:4077–4100. doi:10.5194/hess-18-4077-2014

    Article  Google Scholar 

  • Hewitt K (1998) Glaciers receive a surge of attention in the Karakoram Himalaya. EOS Trans Am Geophys Union 79:104–105

    Article  Google Scholar 

  • Hewitt K (2005) The Karakoram anomaly? Glacier expansion and the elevation effect, Karakoram Himalaya. Mt Res Dev 25:332–340

    Article  Google Scholar 

  • Hewitt K (2007) Tributary glacier surges: an exceptional concentration at Panmah Glacier, Karakoram Himalaya. J Glaciol 53:181–188

    Article  Google Scholar 

  • Hewitt K, Wake CP, Young GJ, David C (1989) Hydrological Investigation at Biafo Glacier, Karakoram Range, Himalaya; an important source of water for the Indus River. Ann Glaciol 13:103–108

    Google Scholar 

  • Hirsch RM, Slack JR (1984) A nonparametric trend test for seasonal data with serial dependence. Water Resour Res 20:727–732

    Article  Google Scholar 

  • Hirsch RM, Slack JR, Smith RA (1982) Techniques of trend analysis for monthly water quality data. Water Resour Res 18:107–121

    Article  Google Scholar 

  • Immerzeel WW, Droogers P, de Jong SM, Bierkens MFP (2009) Large-scale monitoring of snow cover and runoff simulation in Himalayan river basins using remote sensing. Remote Sens Environ 113:40–49. doi:10.1016/j.rse.2008.08.010

    Article  Google Scholar 

  • Immerzeel WW, Pellicciotti F, Shrestha AB (2012) Glaciers as a proxy to quantify the spatial distribution of precipitation in the Hunza Basin. Mt Res Dev 32:30–38

    Article  Google Scholar 

  • Immerzeel WW, Pellicciotti F, Bierkens MFP (2013) Rising river flows throughout the twenty-first century in two Himalayan glacierized watersheds. Nat Geosci 6:742–745. doi:10.1038/ngeo1896

    Article  Google Scholar 

  • Immerzeel WW, Wanders N, Lutz AF, Shea JM, Bierkens MFP (2015) Reconciling high-altitude precipitation in the upper Indus basin with glacier mass balances and runoff. Hydrol Earth Syst Sci 19:4673–4687. doi:10.5194/hess-19-4673-2015

    Article  Google Scholar 

  • Kääb A, Berthier E, Nuth C, Gardelle J, Arnaud Y (2012) Contrasting patterns of early twenty-first-century glacier mass change in the Himalayas. Nature 488:495–498. doi:10.1038/nature11324

    Article  Google Scholar 

  • Kääb A, Treichler D, Nuth C, Berthier E (2015) Brief communication: contending estimates of 2003–2008 glacier mass balance over the Pamir-Karakoram-Himalaya. The Cryosphere 9:557–564. doi:10.5194/tc-9-557-2015

    Article  Google Scholar 

  • Kendall MG (1975) Rank correlation measures, 4th edn. Charles Griffin, London

    Google Scholar 

  • Kendall MG, Gibbons JD (1990) Rank correlation methods, 5th edn. Edward Arnold, London

    Google Scholar 

  • Khan A, Naz BS, Bowling LC (2015) Separating snow, clean and debris covered ice in the Upper Indus Basin, Hindukush-Karakoram-Himalayas, using Landsat images between 1998 and 2002. J Hydrol 521:46–64. doi:10.1016/j.jhydrol.2014.11.048

    Article  Google Scholar 

  • Lee S, Klein AG, Over TM (2005) A comparison of MODIS and NOHRSC snow-cover products for simulating streamflow using the Snowmelt Runoff Model. Hydrol Process 19:2951–2972. doi:10.1002/hyp.5810

    Article  Google Scholar 

  • Liniger H, Weingartner R, Grosjean M (eds) (1998) Mountains of the world: Water towers for the 21st century. Mountain agenda for the commission on sustainable development (CSD), BO12, Berne

  • Mann HB (1945) Nonparametric tests against trend. Econometrica 13:245–259

    Article  Google Scholar 

  • Maurer EP, Rhoads JD, Dubayah RO, Lettenmaier DP (2003) Evaluation of the snow-covered area data product from MODIS. Hydrol Process 17:59–71. doi:10.1002/hyp.1193

    Article  Google Scholar 

  • METI, NASA (2011) ASTER Global Digital Elevation Model (GDEM) version 2, vol 2013. http://reverb.echo.nasa.gov/reverb/. Accessed 15 Nov 2015

  • Mukhopadhyay B, Khan A (2014a) A quantitative assessment of the genetic sources of the hydrologic flow regimes in Upper Indus Basin and its significance in a changing climate. J Hydrol 509:549–572. doi:10.1016/j.jhydrol.2013.11.059

    Article  Google Scholar 

  • Mukhopadhyay B, Khan A (2014b) Rising river flows and glacial mass balance in central Karakoram. J Hydrol 513:192–203. doi:10.1016/j.jhydrol.2014.03.042

    Article  Google Scholar 

  • Mukhopadhyay B, Khan A (2015) A reevaluation of the snowmelt and glacial melt in river flows within Upper Indus Basin and its significance in a changing climate. J Hydrol. doi:10.1016/j.jhydrol.2015.04.045

    Google Scholar 

  • Nalley D, Adamowski J, Khalil B (2012) Using discrete wavelet transforms to analyze trends in streamflow and precipitation in Quebec and Ontario (1954–2008). J Hydrol 475:204–228

    Article  Google Scholar 

  • Nalley D, Adamowski J, Khalil B, Ozga-Zielinski B (2013) Trend detection in surface air temperature in Ontario and Quebec, Canada during 1967–2006 using the discrete wavelet transform. J Atmos Res 132/133:375–398

    Article  Google Scholar 

  • Nuimura T et al (2015) The GAMDAM glacier inventory: a quality-controlled inventory of Asian glaciers. Cryosphere 9:849–864. doi:10.5194/tc-9-849-2015

    Article  Google Scholar 

  • Paul F (2015) Revealing glacier flow and surge dynamics from animated satellite image sequences: examples from the Karakoram. Cryosphere 9:2201–2214. doi:10.5194/tc-9-2201-2015

    Article  Google Scholar 

  • Pellicciotti F, Bauder A, Parola M (2010) Effect of glaciers on streamflow trends in the Swiss Alps. Water Resour Res 46:W10522. doi:10.1029/2009wr009039

    Article  Google Scholar 

  • Pingale S, Khare D, Jat M, Adamowski J (2014) Spatial and temporal trends of mean and extreme rainfall and temperature for the 33 urban centres of the arid and semi-arid state of Rajasthan, India. J Atmos Res 138:73–90

    Article  Google Scholar 

  • Ragettli S et al (2015) Unraveling the hydrology of a Himalayan catchment through integration of high resolution in situ data and remote sensing with an advanced simulation model. Adv Water Res 78:94–111. doi:10.1016/j.advwatres.2015.01.013

    Article  Google Scholar 

  • Rankl M, Kienholz C, Braun M (2014) Glacier changes in the Karakoram region mapped by multimission satellite imagery. Cryosphere 8:977–989. doi:10.5194/tc-8-977-2014

    Article  Google Scholar 

  • Ridley J, Wiltshire A, Mathison C (2013) More frequent occurrence of westerly disturbances in Karakoram up to 2100. Sci Total Environ 468–469(Supplement):S31–S35. doi:10.1016/j.scitotenv.2013.03.074

    Article  Google Scholar 

  • Rodgers JL, Nicewander WA (1988) Thirteen ways to look at the correlation coefficient. Am Stat 42:59–66

    Article  Google Scholar 

  • Sarikaya MA, Bishop MP, Shroder JF, Olsenholler JA (2011) Space-based observations of Eastern Hindu Kush glaciers between 1976 and 2007, Afghanistan and Pakistan. Remote Sens Lett 3:77–84. doi:10.1080/01431161.2010.536181

    Article  Google Scholar 

  • Savéan M et al (2015) Water budget on the Dudh Koshi River (Nepal): uncertainties on precipitation. J Hydrol. doi:10.1016/j.jhydrol.2015.10.040

    Google Scholar 

  • Scherler D, Bookhagen B, Strecker MR (2011) Spatially variable response of Himalayan glaciers to climate change affected by debris cover. Nat Geosci 4:156–159. doi:10.1038/NGEO1068

    Article  Google Scholar 

  • Sen PK (1968) Estimates of the regression coefficient based on Kendall’s tau. J Am Stat Assoc 63:1379–1389. doi:10.1080/01621459.1968.10480934

    Article  Google Scholar 

  • Sevruk B (1985) Correction of precipitation measurements. In: Workshop on the correction of precipitation measurements, WMO/IAHS/ETH, Zurich, Switzerland, p 13–23

  • Sevruk B (1989) Reliability of precipitation measurement. In: International workshop on precipitation measurement, WMO Tech Document, pp 13–19

  • SIHP (1990) Snow and ice hydrology project. WAPDA-IDRC-Wilfrid Laurier University, Upper Indus river basin

    Google Scholar 

  • Sirguey P, Mathieu R, Arnaud Y, Fitzharris BB (2009) Seven years of snow cover monitoring with MODIS to model catchment discharge in New Zealand. Paper presented at the IEEE international geoscience and remote sensing symposium (IGARSS), Cape Town, 12–17 July 2009

  • Spearman C (1904) The proof and measurement of association between two things. Am J Psychol 15:72–101

    Article  Google Scholar 

  • Tahir AA, Chevallier P, Arnaud Y, Ahmad B (2011) Snow cover dynamics and hydrological regime of the Hunza River basin, Karakoram Range, Northern Pakistan. Hydrol Earth Syst Sci HESS 15:2275–2290. doi:10.5194/hess-15-2275-2011

    Article  Google Scholar 

  • Tahir AA, Chevallier P, Arnaud Y, Ashraf M, Bhatti MT (2015) Snow cover trend and hydrological characteristics of the Astore River basin (Western Himalayas) and its comparison to the Hunza basin (Karakoram region). Sci Total Environ 505:748–761. doi:10.1016/j.scitotenv.2014.10.065

    Article  Google Scholar 

  • Tekeli AE, Akyürek Z, Arda Sorman A, Sensoy A, Ünal Sorman A (2005) Using MODIS snow cover maps in modeling snowmelt runoff process in the eastern part of Turkey. Remote Sens Environ 97:216–230

    Article  Google Scholar 

  • Treydte KS, Schleser GH, Helle G, Frank DC, Winiger M, Haug GH, Esper J (2006) The twentieth century was the wettest period in northern Pakistan over the past millennium. Nature 440:1179–1182. doi:10.1038/nature04743

    Article  Google Scholar 

  • Vauchel P (2005) Hydraccess 4.2 edn. Institute of Research for Development, France

    Google Scholar 

  • Vaughan DG et al (2013) Observations: cryosphere. In: Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of Working Group I to the fifth assessment report of the intergovernmental panel on climate change, Cambridge University Press, Cambridge

  • Wake CP (1989) Glaciochemical investigations as a tool to determine the spatial variation of snow accumulation in the Central Karakoram, Northern Pakistan. Ann Glaciol 13:279–284

    Google Scholar 

  • Wang X, Xie H, Liang T (2008) Evaluation of MODIS snow cover and cloud mask and its application in Northern Xinjiang, China. Remote Sens Environ 112:1497–1513. doi:10.1016/j.rse.2007.05.016

    Article  Google Scholar 

  • Young GJ, Hewitt K (1990) Hydrology research in the upper Indus basin, Karakoram Himalaya, Pakistan. In: Hydrology of mountainous areas, Czechoslovakia, International Association Hydrological Sciences, p 139–152

Download references

Acknowledgments

The Higher Education Commission of Pakistan financially supported this research work. This financial support is gratefully acknowledged and appreciated. The authors extend their thanks to the Water and Power Development Authority (WAPDA) and the Pakistan Meteorological Department (PMD) for contributing their hydrological and meteorological data, respectively. The authors also wish to thank NASA and Japan’s Ministry of the Economy, Trade and Industry (METI) for providing ASTER GDEM. Partial funding for this research was provided by an NSERC Discovery Grant, and a CFI grant, held by Jan Adamowski. The authors are grateful to Yves Arnaud, IRD scientist at the LTHE, Grenoble, France, for helping in the methodology of the MOD10A2 treatments. Special thanks to Mr. Danial Hashmi of WAPDA for providing the corrected coordinates of the high-altitude weather stations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adnan Ahmad Tahir.

Additional information

Responsible Editor: S.-W. Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tahir, A.A., Adamowski, J.F., Chevallier, P. et al. Comparative assessment of spatiotemporal snow cover changes and hydrological behavior of the Gilgit, Astore and Hunza River basins (Hindukush–Karakoram–Himalaya region, Pakistan) . Meteorol Atmos Phys 128, 793–811 (2016). https://doi.org/10.1007/s00703-016-0440-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00703-016-0440-6

Keywords

Navigation