Skip to main content
Log in

Basal ganglia, movement disorders and deep brain stimulation: advances made through non-human primate research

  • Neurology and Preclinical Neurological Studies - Review Article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

Studies in non-human primates (NHPs) have led to major advances in our understanding of the function of the basal ganglia and of the pathophysiologic mechanisms of hypokinetic movement disorders such as Parkinson’s disease and hyperkinetic disorders such as chorea and dystonia. Since the brains of NHPs are anatomically very close to those of humans, disease states and the effects of medical and surgical approaches, such as deep brain stimulation (DBS), can be more faithfully modeled in NHPs than in other species. According to the current model of the basal ganglia circuitry, which was strongly influenced by studies in NHPs, the basal ganglia are viewed as components of segregated networks that emanate from specific cortical areas, traverse the basal ganglia, and ventral thalamus, and return to the frontal cortex. Based on the presumed functional domains of the different cortical areas involved, these networks are designated as ‘motor’, ‘oculomotor’, ‘associative’ and ‘limbic’ circuits. The functions of these networks are strongly modulated by the release of dopamine in the striatum. Striatal dopamine release alters the activity of striatal projection neurons which, in turn, influences the (inhibitory) basal ganglia output. In parkinsonism, the loss of striatal dopamine results in the emergence of oscillatory burst patterns of firing of basal ganglia output neurons, increased synchrony of the discharge of neighboring basal ganglia neurons, and an overall increase in basal ganglia output. The relevance of these findings is supported by the demonstration, in NHP models of parkinsonism, of the antiparkinsonian effects of inactivation of the motor circuit at the level of the subthalamic nucleus, one of the major components of the basal ganglia. This finding also contributed strongly to the revival of the use of surgical interventions to treat patients with Parkinson’s disease. While ablative procedures were first used for this purpose, they have now been largely replaced by DBS of the subthalamic nucleus or internal pallidal segment. These procedures are not only effective in the treatment of parkinsonism, but also in the treatment of hyperkinetic conditions (such as chorea or dystonia) which result from pathophysiologic changes different from those underlying Parkinson’s disease. Thus, these interventions probably do not counteract specific aspects of the pathophysiology of movement disorders, but non-specifically remove the influence of the different types of disruptive basal ganglia output from the relatively intact portions of the motor circuitry downstream from the basal ganglia. Knowledge gained from studies in NHPs remains critical for our understanding of the pathophysiology of movement disorders, of the effects of DBS on brain network activity, and the development of better treatments for patients with movement disorders and other neurologic or psychiatric conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adamchic I et al (2014) Coordinated reset neuromodulation for Parkinson’s disease: proof-of-concept study. Mov Disord. doi:10.1002/mds.25923

    PubMed  PubMed Central  Google Scholar 

  • Agnesi F, Connolly AT, Baker KB, Vitek JL, Johnson MD (2013) Deep brain stimulation imposes complex informational lesions. PLoS One 8:e74462. doi:10.1371/journal.pone.0074462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Albin RL, Young AB, Penney JB (1989) The functional anatomy of basal ganglia disorders. Trends Neurosci 12:366–375

    Article  CAS  PubMed  Google Scholar 

  • Aldridge D, Theodoros D, Angwin A, Vogel AP (2016) Speech outcomes in Parkinson’s disease after subthalamic nucleus deep brain stimulation: a systematic review. Parkinsonism Relat Disord 33:3–11. doi:10.1016/j.parkreldis.2016.09.022

    Article  PubMed  Google Scholar 

  • Alexander GE, Crutcher MD (1990) Functional architecture of basal ganglia circuits: neural substrates of parallel processing Trends. Neuroscience 13:266–271

    CAS  Google Scholar 

  • Alexander GE, DeLong MR, Strick PL (1986) Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci 9:357–381. doi:10.1146/annurev.ne.09.030186.002041

    Article  CAS  PubMed  Google Scholar 

  • Alexander GE, Crutcher MD, DeLong MR (1990) Basal ganglia-thalamocortical circuits: parallel substrates for motor, oculomotor, “prefrontal” and “limbic” functions. Prog Brain Res 85:119–146

    Article  CAS  PubMed  Google Scholar 

  • Alexander GM, Schwartzman RJ, Brainard L, Gordon SW, Grothusen JR (1992) Changes in brain catecholamines and dopamine uptake sites at different stages of MPTP parkinsonism in monkeys. Brain Res 588:261–269

    Article  CAS  PubMed  Google Scholar 

  • Alvarez L et al (2001) Dorsal subthalamotomy for Parkinson’s disease. Mov Disord 16:72–78

    Article  CAS  PubMed  Google Scholar 

  • Alvarez L et al (2005) Bilateral subthalamotomy in Parkinson’s disease: initial and long-term response. Brain 128:570–583

    Article  CAS  PubMed  Google Scholar 

  • Anderson ME, Postupna N, Ruffo M (2003) Effects of high-frequency stimulation in the internal globus pallidus on the activity of thalamic neurons in the awake monkey. J Neurophys 89:1150–1160

    Article  Google Scholar 

  • Aziz TZ, Peggs D, Sambrook MA, Crossman AR (1991) Lesion of the subthalamic nucleus for the alleviation of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced parkinsonism in the primate. Mov Disord 6:288–292. doi:10.1002/mds.870060404

    Article  CAS  PubMed  Google Scholar 

  • Aziz TZ, Peggs D, Agarwal E, Sambrook MA, Crossman AR (1992) Subthalamic nucleotomy alleviates parkinsonism in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-exposed primate. Br J Neurosurg 6:575–582

    Article  CAS  PubMed  Google Scholar 

  • Bar-Gad I, Elias S, Vaadia E, Bergman H (2004) Complex locking rather than complete cessation of neuronal activity in the globus pallidus of a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated primate in response to pallidal microstimulation. J Neurosci 24:7410–7419

    Article  CAS  PubMed  Google Scholar 

  • Baron MS, Wichmann T, Ma D, DeLong MR (2002) Effects of transient focal inactivation of the basal ganglia in parkinsonian primates. J Neurosci 22:592–599

    CAS  PubMed  Google Scholar 

  • Baunez C, Robbins TW (1999) Effects of transient inactivation of the subthalamic nucleus by local muscimol and APV infusions on performance on the five-choice serial reaction time task in rats. Psychopharmacology 141:57–65

    Article  CAS  PubMed  Google Scholar 

  • Benabid AL, Pollak P, Louveau A, Henry S, de Rougemont J (1987) Combined (thalamotomy and stimulation) stereotactic surgery of the VIM thalamic nucleus for bilateral Parkinson disease. Appl Neurophysiol 50:344–346

    CAS  PubMed  Google Scholar 

  • Benabid AL et al (1991) Long-term suppression of tremor by chronic stimulation of the ventral intermediate thalamic nucleus. Lancet 337:403–406

    Article  CAS  PubMed  Google Scholar 

  • Benabid AL et al (2001) Deep brain stimulation of the corpus luysi (subthalamic nucleus) and other targets in Parkinson’s disease. Extension to new indications such as dystonia and epilepsy. J Neurol 248 Suppl 3:III37–III47

    Article  CAS  PubMed  Google Scholar 

  • Benazzouz A, Gross C, Feger J, Boraud T, Bioulac B (1993) Reversal of rigidity and improvement in motor performance by subthalamic high-frequency stimulation in MPTP-treated monkeys. Eur J Neurosci 5:382–389

    Article  CAS  PubMed  Google Scholar 

  • Benazzouz A, Boraud T, Feger J, Burbaud P, Bioulac B, Gross C (1996) Alleviation of experimental hemiparkinsonism by high-frequency stimulation of the subthalamic nucleus in primates: a comparison with l-Dopa treatment. Mov Disord 11:627–632

    Article  CAS  PubMed  Google Scholar 

  • Bergman H, Wichmann T, DeLong MR (1990) Reversal of experimental parkinsonism by lesions of the subthalamic nucleus. Science 249:1436–1438

    Article  CAS  PubMed  Google Scholar 

  • Bergman H, Wichmann T, Karmon B, DeLong MR (1994) The primate subthalamic nucleus. II. Neuronal activity in the MPTP model of parkinsonism. J Neurophys 72:507–520

    Article  CAS  Google Scholar 

  • Brocker DT, Grill WM (2013) Principles of electrical stimulation of neural tissue. Handb Clin Neurol 116:3–18. doi:10.1016/B978-0-444-53497-2.00001-2

    Article  PubMed  Google Scholar 

  • Bronstein JM et al (2010) Deep brain stimulation for Parkinson disease: an expert consensus and review of key issues. Arch Neurol 68:165–171. doi:10.1001/archneurol.2010.260

    PubMed  PubMed Central  Google Scholar 

  • Brown P, Oliviero A, Mazzone P, Insola A, Tonali P, Di Lazzaro V (2001) Dopamine dependency of oscillations between subthalamic nucleus and pallidum in Parkinson’s disease. J Neurosci 21:1033–1038

    CAS  PubMed  Google Scholar 

  • Burns RS, Chiueh CC, Markey SP, Ebert MH, Jacobowitz DM, Kopin IJ (1983) A primate model of parkinsonism: selective destruction of dopaminergic neurons in the pars compacta of the substantia nigra by N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Proc Natl Acad Sci USA 80:4546–4550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carpenter MB, Whittier JR, Mettler FA (1950) Analysis of choreoid hyperkinesia in the Rhesus monkey; surgical and pharmacological analysis of hyperkinesia resulting from lesions in the subthalamic nucleus of Luys. J Comp Neurol 92:293–331

    Article  CAS  PubMed  Google Scholar 

  • Carvalho GA, Nikkhah G (2001) Subthalamic nucleus lesions are neuroprotective against terminal 6-OHDA-induced striatal lesions and restore postural balancing reactions. Exp Neurol 171:405–417

    Article  CAS  PubMed  Google Scholar 

  • Chang HT, Kita H, Kitai ST (1984) The ultrastructural morphology of the subthalamic-nigral axon terminals intracellularly labeled with horseradish peroxidase. Brain Res 299:182–185

    Article  CAS  PubMed  Google Scholar 

  • Chevalier G, Deniau JM (1990) Disinhibition as a basic process in the expression of striatal functions. Trends Neurosci 13:277–280

    Article  CAS  PubMed  Google Scholar 

  • Chiken S, Nambu A (2013) High-frequency pallidal stimulation disrupts information flow through the pallidum by GABAergic inhibition. J Neurosci 33:2268–2280. doi:10.1523/JNEUROSCI.4144-11.2013

    Article  CAS  PubMed  Google Scholar 

  • Connolly AT et al (2015) Local field potential recordings in a non-human primate model of Parkinson’s disease using the Activa PC + S neurostimulator. J Neural Eng 12:066012. doi:10.1088/1741-2560/12/6/066012

    Article  PubMed  PubMed Central  Google Scholar 

  • Crossman AR, Sambrook MA, Jackson A (1984) Experimental hemichorea/hemiballismus in the monkey. Studies on the intracerebral site of action in a drug-induced dyskinesia. Brain 107:579–596

    Article  PubMed  Google Scholar 

  • Crossman AR, Mitchell IJ, Sambrook MA (1985) Regional brain uptake of 2-deoxyglucose in N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced parkinsonism in the macaque monkey. Neuropharmacology 24:587–591

    Article  CAS  PubMed  Google Scholar 

  • Cunic D, Roshan L, Khan FI, Lozano AM, Lang AE, Chen R (2002) Effects of subthalamic nucleus stimulation on motor cortex excitability in Parkinson’s disease. Neurology 58:1665–1672

    Article  CAS  PubMed  Google Scholar 

  • Davis GC, Williams AC, Markey SP, Ebert MH, Caine ED, Reichert CM, Kopin IJ (1979) Chronic parkinsonism secondary to intravenous injection of meperidine analogues. Psychiatry Res 1:249–254

    Article  CAS  PubMed  Google Scholar 

  • DeLong MR (1971) Activity of pallidal neurons during movement. J Neurophysiol 34:414–427

    Article  CAS  PubMed  Google Scholar 

  • DeLong MR (1972) Activity of basal ganglia neurons during movement. Brain Res 40:127–135

    Article  CAS  PubMed  Google Scholar 

  • DeLong MR (1990) Primate models of movement disorders of basal ganglia origin. Trends Neurosci 13:281–285

    Article  CAS  PubMed  Google Scholar 

  • DeLong MR, Crutcher MD, Georgopoulos AP (1983) Relations between movement and single cell discharge in the substantia nigra of the behaving monkey. J Neurosci 3:1599–1606

    CAS  PubMed  Google Scholar 

  • DeLong MR, Georgopoulos AP, Crutcher MD, Mitchell SJ, Richardson RT, Alexander GE (1984) Functional organization of the basal ganglia: contributions of single-cell recording studies. Ciba Found Symp 107:64–82

    CAS  PubMed  Google Scholar 

  • DeLong MR, Crutcher MD, Georgopoulos AP (1985) Primate globus pallidus and subthalamic nucleus: functional organization. J Neurophysiol 53:530–543

    Article  CAS  PubMed  Google Scholar 

  • DeLong MR, Alexander GE, Mitchell SJ, Richardson RT (1986) The contribution of basal ganglia to limb control. Prog Brain Res 64:161–174. doi:10.1016/S0079-6123(08)63411-1

    Article  CAS  PubMed  Google Scholar 

  • Devergnas A, Wichmann T (2011) Cortical potentials evoked by deep brain stimulation in the subthalamic area. Front Syst Neurosci 5:30. doi:10.3389/fnsys.2011.00030

    Article  PubMed  PubMed Central  Google Scholar 

  • Dorval AD, Russo GS, Hashimoto T, Xu W, Grill WM, Vitek JL (2008) Deep brain stimulation reduces neuronal entropy in the MPTP-primate model of Parkinson’s disease. J Neurophys 100:2807–2818. doi:10.1152/jn.90763.2008

    Article  Google Scholar 

  • Elsworth JD, Deutch AY, Redmond DE Jr, Sladek JR Jr, Roth RH (1990) MPTP reduces dopamine and norepinephrine concentrations in the supplementary motor area and cingulate cortex of the primate. Neurosci Lett 114:316–322

    Article  CAS  PubMed  Google Scholar 

  • Filion M, Tremblay L (1991) Abnormal spontaneous activity of globus pallidus neurons in monkeys with MPTP-induced parkinsonism. Brain Res 547:142–151

    CAS  PubMed  Google Scholar 

  • Filion M, Tremblay L, Bedard PJ (1988) Abnormal influences of passive limb movement on the activity of globus pallidus neurons in parkinsonian monkeys. Brain Res 444:165–176

    Article  CAS  PubMed  Google Scholar 

  • Galvan A, Wichmann T (2008) Pathophysiology of parkinsonism. Clin Neurophysiol 119:1459–1474. doi:10.1016/j.clinph.2008.03.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao DM, Benazzouz A, Piallat B, Bressand K, Ilinsky IA, Kultas-Ilinsky K, Benabid AL (1999) High-frequency stimulation of the subthalamic nucleus suppresses experimental resting tremor in the monkey. Neuroscience 88:201–212

    Article  CAS  PubMed  Google Scholar 

  • Gatev P, Darbin O, Wichmann T (2006) Oscillations in the basal ganglia under normal conditions and in movement disorders. Mov Disord 21:1566–1577. doi:10.1002/mds.21033

    Article  PubMed  Google Scholar 

  • Gerfen CR, Engber TM, Mahan LC, Susel Z, Chase TN, Monsma FJ Jr, Sibley DR (1990) D1 and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons. Science 250:1429–1432

    Article  CAS  PubMed  Google Scholar 

  • Gill SS, Heywood P (1998) Bilateral subthalamic nucleotomy can be accomplished safely. Mov Disord 13:201

    Google Scholar 

  • Golestanirad L, Elahi B, Graham SJ, Das S, Wald LL (2016) Efficacy and safety of pedunculopontine nuclei (PPN) deep brain stimulation in the treatment of gait disorders: a meta-analysis of clinical studies. Can J Neurol Sci 43:120–126. doi:10.1017/cjn.2015.318

    Article  PubMed  Google Scholar 

  • Gomez-Gallego M, Fernandez-Villalba E, Fernandez-Barreiro A, Herrero MT (2007) Changes in the neuronal activity in the pedunculopontine nucleus in chronic MPTP-treated primates: an in situ hybridization study of cytochrome oxidase subunit I, choline acetyl transferase and substance P mRNA expression. J Neural Transm 114:319–326. doi:10.1007/s00702-006-0547-x

    Article  CAS  PubMed  Google Scholar 

  • Grabli D et al (2013) Gait disorders in parkinsonian monkeys with pedunculopontine nucleus lesions: a tale of two systems. J Neurosci 33:11986–11993. doi:10.1523/JNEUROSCI.1568-13.2013

    Article  CAS  PubMed  Google Scholar 

  • Gradinaru V, Mogri M, Thompson KR, Henderson JM, Deisseroth K (2009) Optical deconstruction of parkinsonian neural circuitry. Science 324:354–359. doi:10.1126/science.1167093

    Article  CAS  PubMed  Google Scholar 

  • Grill WM, Snyder AN, Miocinovic S (2004) Deep brain stimulation creates an informational lesion of the stimulated nucleus. NeuroReport 15:1137–1140

    Article  PubMed  Google Scholar 

  • Guo Y, Rubin JE, McIntyre CC, Vitek JL, Terman D (2008) Thalamocortical relay fidelity varies across subthalamic nucleus deep brain stimulation protocols in a data-driven computational model. J Neurophys 99:1477–1492. doi:10.1152/jn.01080.2007

    Article  Google Scholar 

  • Guridi J et al (1996) Subthalamotomy in parkinsonian monkeys. Behav Biochem Anal Brain 119:1717–1727

    Google Scholar 

  • Haber SN, Fudge JL, McFarland NR (2000) Striatonigrostriatal pathways in primates form an ascending spiral from the shell to the dorsolateral striatum. J Neurosci 20:2369–2382

    CAS  PubMed  Google Scholar 

  • Hahn PJ, Russo GS, Hashimoto T, Miocinovic S, Xu W, McIntyre CC, Vitek JL (2008) Pallidal burst activity during therapeutic deep brain stimulation. Exp Neurol 211:243–251. doi:10.1016/j.expneurol.2008.01.032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamada I, DeLong MR (1992a) Excitotoxic acid lesions of the primate subthalamic nucleus result in reduced pallidal neuronal activity during active holding. J Neurophysiol 68:1859–1866

    Article  CAS  PubMed  Google Scholar 

  • Hamada I, DeLong MR (1992b) Excitotoxic acid lesions of the primate subthalamic nucleus result in transient dyskinesias of the contralateral limbs. J Neurophysiol 68:1850–1858

    Article  CAS  PubMed  Google Scholar 

  • Hamani C et al (2016a) Pedunculopontine nucleus region deep brain stimulation in parkinson disease: surgical anatomy and terminology. Stereotact Funct Neurosurg 94:298–306. doi:10.1159/000449010

    Article  PubMed  PubMed Central  Google Scholar 

  • Hamani C et al (2016b) Pedunculopontine nucleus region deep brain stimulation in Parkinson disease: surgical techniques, side effects, and postoperative imaging. Stereotact Funct Neurosurg 94:307–319. doi:10.1159/000449011

    Article  PubMed  PubMed Central  Google Scholar 

  • Hammond C, Deniau JM, Rizk A, Feger J (1978) Electrophysiological demonstration of an excitatory subthalamonigral pathway in the rat. Brain Res 151:235–244

    Article  CAS  PubMed  Google Scholar 

  • Hammond C, Bergman H, Brown P (2007) Pathological synchronization in Parkinson’s disease: networks, models and treatments. Trends Neurosci 30:357–364

    Article  CAS  PubMed  Google Scholar 

  • Hartmann-von Monakow K, Akert K, Kunzle H (1978) Projections of the precentral motor cortex and other cortical areas of the frontal lobe to the subthalamic nucleus in the monkey. Exp Brain Res 33:395–403

    Google Scholar 

  • Hashimoto T, Elder CM, Okun MS, Patrick SK, Vitek JL (2003) Stimulation of the subthalamic nucleus changes the firing pattern of pallidal neurons. J Neurosci 23:1916–1923

    CAS  PubMed  Google Scholar 

  • Haynes WI, Haber SN (2013) The organization of prefrontal-subthalamic inputs in primates provides an anatomical substrate for both functional specificity and integration: implications for basal ganglia models and deep brain stimulation. J Neurosci 33:4804–4814. doi:10.1523/JNEUROSCI.4674-12.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heimer G, Rivlin-Etzion M, Bar-Gad I, Goldberg JA, Haber SN, Bergman H (2006) Dopamine replacement therapy does not restore the full spectrum of normal pallidal activity in the 1-methyl-4-phenyl-1,2,3,6-tetra-hydropyridine primate model of parkinsonism. J Neurosci 26:8101–8114

    Article  CAS  PubMed  Google Scholar 

  • Hoover JE, Strick PL (1993) Multiple output channels in the basal ganglia. Science 259:819–821

    Article  CAS  PubMed  Google Scholar 

  • Houston B, Blumenfeld Z, Quinn E, Bronte-Stewart H, Chizeck H (2015) Long-term detection of Parkinsonian tremor activity from subthalamic nucleus local field potentials. Conf Proc IEEE Eng Med Biol Soc 2015:3427–3431. doi:10.1109/EMBC.2015.7319129

    PubMed  Google Scholar 

  • Hutchinson WD, Levy R, Dostrovsky JO, Lozano AM, Lang AE (1997) Effects of apomorphine on globus pallidus neurons in parkinsonian patients. Ann Neurol 42:767–775. doi:10.1002/ana.410420513

    Article  CAS  PubMed  Google Scholar 

  • Hutchison WD, Lozano AM, Davis K, Saint-Cyr JA, Lang AE, Dostrovsky JO (1994) Differential neuronal activity in segments of globus pallidus in Parkinson’s disease patients. NeuroReport 5:1533–1537

    Article  CAS  PubMed  Google Scholar 

  • Jenkinson N, Nandi D, Miall RC, Stein JF, Aziz TZ (2004) Pedunculopontine nucleus stimulation improves akinesia in a Parkinsonian monkey. NeuroReport 15:2621–2624

    Article  PubMed  Google Scholar 

  • Jenkinson N, Nandi D, Oram R, Stein JF, Aziz TZ (2006) Pedunculopontine nucleus electric stimulation alleviates akinesia independently of dopaminergic mechanisms. NeuroReport 17:639–641

    Article  PubMed  Google Scholar 

  • Joel D, Weiner I (1994) The organization of the basal ganglia-thalamocortical circuits: open interconnected rather than closed segregated. Neuroscience 63:363–379

    Article  CAS  PubMed  Google Scholar 

  • Johnson LA, Nebeck SD, Muralidharan A, Johnson MD, Baker KB, Vitek JL (2016) Closed-loop deep brain stimulation effects on parkinsonian motor symptoms in a non-human primate—is beta enough? Brain Stimul 9:892–896. doi:10.1016/j.brs.2016.06.051

    Article  PubMed  PubMed Central  Google Scholar 

  • Juba A, Rakonitz E (1937) Concerning a case of hemiballism (Article on the somatotopy of corpus luysi). Arch Psychiatr Nerven 106:629–642. doi:10.1007/Bf01987730

    Article  Google Scholar 

  • Kammermeier S, Pittard D, Hamada I, Wichmann T (2016) Effects of high frequency stimulation of the internal pallidal segment on neuronal activity in the thalamus in parkinsonian monkeys. J Neurophysiol. doi:10.1152/jn.00104.2016

    PubMed Central  Google Scholar 

  • Keane M, Deyo S, Abosch A, Bajwa JA, Johnson MD (2012) Improved spatial targeting with directionally segmented deep brain stimulation leads for treating essential tremor. J Neural Eng 9:046005. doi:10.1088/1741-2560/9/4/046005

    Article  PubMed  PubMed Central  Google Scholar 

  • Kemp JM, Powell TPS (1971) The connexions of the striatum and globus pallidus: synthesis and speculation. Philos Trans R Soc Lond Ser B Biol Sci 262:441–457

    Article  CAS  Google Scholar 

  • Kita H, Kitai ST (1987) Efferent projections of the subthalamic nucleus in the rat: light and electron microscopic analysis with the PHA-L method. J Comp Neurol 260:435–452

    Article  CAS  PubMed  Google Scholar 

  • Kitai S, Kita H (1987) Anatomy and physiology of the subthalamic nucleus: a driving force of the basal ganglia. In: Carpenter M (ed) The basal ganglia II. Plenum, New York, pp 357–373

    Chapter  Google Scholar 

  • Kojima J et al (1997) Excitotoxic lesions of the pedunculopontine tegmental nucleus produce contralateral hemiparkinsonism in the monkey. Neurosci Lett 226:111–114

    Article  CAS  PubMed  Google Scholar 

  • Kravitz AV, Freeze BS, Parker PR, Kay K, Thwin MT, Deisseroth K, Kreitzer A (2010a) Optogenetic dissection of basal ganglia circuit function in normal and parkinsonian mice. In: IBAGS X, Long Branch, p P-140

  • Kravitz AV, Freeze BS, Parker PR, Kay K, Thwin MT, Deisseroth K, Kreitzer AC (2010b) Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry. Nature 466:622–626. doi:10.1038/nature09159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laitinen LV, Bergenheim AT, Hariz MI (1992a) Leksell’s posteroventral pallidotomy in the treatment of Parkinson’s disease. J Neurosurg 76:53–61

    Article  CAS  PubMed  Google Scholar 

  • Laitinen LV, Bergenheim AT, Hariz MI (1992b) Leksell’s posteroventral pallidotomy in the treatment of Parkinson’s disease. J Neurosurg 76:53–61. doi:10.3171/jns.1992.76.1.0053

    Article  CAS  PubMed  Google Scholar 

  • Lambert C et al (2012) Confirmation of functional zones within the human subthalamic nucleus: patterns of connectivity and sub-parcellation using diffusion weighted imaging. Neuroimage 60:83–94. doi:10.1016/j.neuroimage.2011.11.082

    Article  PubMed  PubMed Central  Google Scholar 

  • Langston JW, Ballard PA Jr (1983) Parkinson’s disease in a chemist working with 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine. N Engl J Med 309:310

    CAS  PubMed  Google Scholar 

  • Langston JW, Ballard P, Tetrud JW, Irwin I (1983) Chronic parkinsonism in humans due to a product of meperidine-analog synthesis. Science 219:979–980

    Article  CAS  PubMed  Google Scholar 

  • Langston JW, Forno LS, Rebert CS, Irwin I (1984) Selective nigral toxicity after systemic administration of 1-methyl-4-phenyl-1,2,5,6-tetrahydropyrine (MPTP) in the squirrel monkey. Brain Res 292:390–394

    Article  CAS  PubMed  Google Scholar 

  • Leblois A, Meissner W, Bioulac B, Gross CE, Hansel D, Boraud T (2007) Late emergence of synchronized oscillatory activity in the pallidum during progressive parkinsonism. Eur J Neurosci 26:1701–1713

    Article  PubMed  Google Scholar 

  • Lee JI, Verhagen Metman L, Ohara S, Dougherty PM, Kim JH, Lenz FA (2007) Internal pallidal neuronal activity during mild drug-related dyskinesias in Parkinson’s disease: decreased firing rates and altered firing patterns. J Neurophysiol 97:2627–2641. doi:10.1152/jn.00443.2006

    Article  CAS  PubMed  Google Scholar 

  • Levy R, Dostrovsky JO, Lang AE, Sime E, Hutchison WD, Lozano AM (2001) Effects of apomorphine on subthalamic nucleus and globus pallidus internus neurons in patients with Parkinson’s disease. J Neurophys 86:249–260

    Article  CAS  Google Scholar 

  • Li S, Arbuthnott GW, Jutras MJ, Goldberg JA, Jaeger D (2007) Resonant antidromic cortical circuit activation as a consequence of high-frequency subthalamic deep-brain stimulation. J Neurophys 98:3525–3537. doi:10.1152/jn.00808.2007

    Article  CAS  Google Scholar 

  • Little S et al (2013) Adaptive deep brain stimulation in advanced Parkinson disease. Ann Neurol 74:449–457. doi:10.1002/ana.23951

    Article  PubMed  PubMed Central  Google Scholar 

  • Little S et al (2014) Controlling Parkinson’s disease with adaptive deep brain stimulation. J Vis Exp. doi:10.3791/51403

    PubMed  PubMed Central  Google Scholar 

  • Little S et al (2016) Adaptive deep brain stimulation for Parkinson’s disease demonstrates reduced speech side effects compared to conventional stimulation in the acute setting. J Neurol Neurosurg Psychiatry 87:1388–1389. doi:10.1136/jnnp-2016-313518

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu LD, Prescott IA, Dostrovsky JO, Hodaie M, Lozano AM, Hutchison WD (2012) Frequency-dependent effects of electrical stimulation in the globus pallidus of dystonia patients. J Neurophysiol 108:5–17. doi:10.1152/jn.00527.2011

    Article  PubMed  Google Scholar 

  • Malekmohammadi M, Herron J, Velisar A, Blumenfeld Z, Trager MH, Chizeck HJ, Brontë-Stewart H (2016) Kinematic adaptive deep brain stimulation for resting tremor in Parkinson’s disease. Mov Disord 31:426–428. doi:10.1002/mds.26482

    Article  PubMed  Google Scholar 

  • Martin JP (1927) Hemichorea resulting from a local lesion of the brain. (The syndrome of the body of luys.). Brain 50:637–651. doi:10.1093/brain/50.3-4.637

    Article  Google Scholar 

  • Masilamoni GJ et al (2011) Metabotropic glutamate receptor 5 antagonist protects dopaminergic and noradrenergic neurons from degeneration in MPTP-treated monkeys. Brain 134:2057–2073. doi:10.1093/brain/awr137

    Article  PubMed  PubMed Central  Google Scholar 

  • Mathai A, Ma Y, Pare JF, Villalba RM, Wichmann T, Smith Y (2015) Reduced cortical innervation of the subthalamic nucleus in MPTP-treated parkinsonian monkeys. Brain 138:946–962. doi:10.1093/brain/awv018

    Article  PubMed  PubMed Central  Google Scholar 

  • McIntyre CC, Savasta M, Walter BL, Vitek JL (2004) How does deep brain stimulation work? Present understanding and future questions. J Clin Neurophysiol 21:40–50

    Article  PubMed  Google Scholar 

  • Meissner W, Leblois A, Hansel D, Bioulac B, Gross CE, Benazzouz A, Boraud T (2005) Subthalamic high frequency stimulation resets subthalamic firing and reduces abnormal oscillations. Brain 128:2372–2382

    Article  PubMed  Google Scholar 

  • Merello M, Balej J, Delfino M, Cammarota A, Betti O, Leiguarda R (1999) Apomorphine induces changes in GPi spontaneous outflow in patients with Parkinson’s disease. Mov Disord 14:45–49

    Article  CAS  PubMed  Google Scholar 

  • Mettler FA, Stern GM (1962) Somatotopic localization in rhesus subthalamic nucleus. Arch Neurol 7:328–329

    Article  CAS  PubMed  Google Scholar 

  • Miller WC, DeLong MR (1987) Altered tonic activity of neurons in the globus pallidus and subthalamic nucleus in the primate MPTP model of parkinsonism. In: Carpenter MB, Jayaraman A (eds) The basal ganglia II. Plenum Press, New York, pp 415–427

    Chapter  Google Scholar 

  • Moersch FP, Kernohan JW (1939) Hemiballismus—a clinicopathologic study. Arch Neurol Psychiatry 41:365–372

    Article  Google Scholar 

  • Muralidharan A, Zhang J, Ghosh D, Johnson MD, Baker KB, Vitek JL (2017) Modulation of neuronal activity in the motor thalamus during GPi-DBS in the MPTP nonhuman primate model of Parkinson’s disease. Brain Stimul 10:126–138. doi:10.1016/j.brs.2016.10.005

    Article  PubMed  Google Scholar 

  • Nambu A, Takada M, Inase M, Tokuno H (1996) Dual somatotopical representations in the primate subthalamic nucleus: evidence for ordered but reversed body-map transformations from the primary motor cortex and the supplementary motor area. J Neurosci 16:2671–2683

    CAS  PubMed  Google Scholar 

  • Nandi D, Jenkinson N, Stein J, Aziz T (2008) The pedunculopontine nucleus in Parkinson’s disease: primate studies. Br J Neurosurg 22(Suppl 1):S4–S8. doi:10.1080/02688690802448350

    Article  PubMed  Google Scholar 

  • Nimmrich V, Draguhn A, Axmacher N (2015) Neuronal network oscillations in neurodegenerative diseases. Neuromolecular Med 17:270–284. doi:10.1007/s12017-015-8355-9

    Article  CAS  PubMed  Google Scholar 

  • Nini A, Feingold A, Slovin H, Bergman H (1995) Neurons in the globus pallidus do not show correlated activity in the normal monkey, but phase-locked oscillations appear in the MPTP model of parkinsonism. J Neurophys 74:1800–1805

    Article  CAS  Google Scholar 

  • Papa SM, Desimone R, Fiorani M, Oldfield EH (1999) Internal globus pallidus discharge is nearly suppressed during levodopa-induced dyskinesias. Ann Neurol 46:732–738

    Article  CAS  PubMed  Google Scholar 

  • Patel NK, Heywood P, O’Sullivan K, McCarter R, Love S, Gill SS (2003) Unilateral subthalamotomy in the treatment of Parkinson’s disease. Brain 126:1136–1145

    Article  PubMed  Google Scholar 

  • Phillips JM, Brown VJ (2000) Anticipatory errors after unilateral lesions of the subthalamic nucleus in the rat: evidence for a failure of response inhibition. Behav Neurosci 114:150–157

    Article  CAS  PubMed  Google Scholar 

  • Phillips JM, Latimer MP, Gupta S, Winn P, Brown VJ (1998) Excitotoxic lesions of the subthalamic nucleus ameliorate asymmetry induced by striatal dopamine depletion in the rat. Behav Brain Res 90:73–77

    Article  CAS  PubMed  Google Scholar 

  • Pifl C, Bertel O, Schingnitz G, Hornykiewicz O (1990) Extrastriatal dopamine in symptomatic and asymptomatic Rhesus monkeys treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Neurochem Int 17:263–270

    Article  CAS  PubMed  Google Scholar 

  • Pifl C, Schingnitz G, Hornykiewicz O (1991) Effect of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine on the regional distribution of brain monoamines in the rhesus monkey. Neuroscience 44:591–605

    Article  CAS  PubMed  Google Scholar 

  • Pifl C, Schingnitz G, Hornykiewicz O (1992) Striatal and non-striatal neurotransmitter changes in MPTP-parkinsonism in rhesus monkey: the symptomatic versus the asymptomatic condition. Neurochem Int 20(Suppl):295S–297S

    Article  CAS  PubMed  Google Scholar 

  • Pifl C, Hornykiewicz O, Blesa J, Adanez R, Cavada C, Obeso JA (2013) Reduced noradrenaline, but not dopamine and serotonin in motor thalamus of the MPTP primate: relation to severity of parkinsonism. J Neurochem 125:657–662. doi:10.1111/jnc.12162

    Article  CAS  PubMed  Google Scholar 

  • Pollak P et al (1993) Effets de la stimulation du noyau sous-thalamique dans la maladie de Parkinson. Revue Neurologique 149:175–176

    CAS  PubMed  Google Scholar 

  • Pollo C et al (2014) Directional deep brain stimulation: an intraoperative double-blind pilot study. Brain 137:2015–2026. doi:10.1093/brain/awu102

    Article  PubMed  Google Scholar 

  • Popovych OV, Tass PA (2012) Desynchronizing electrical and sensory coordinated reset neuromodulation. Front Hum Neurosci 6:58. doi:10.3389/fnhum.2012.00058

    Article  PubMed  PubMed Central  Google Scholar 

  • Raz A, Vaadia E, Bergman H (2000) Firing patterns and correlations of spontaneous discharge of pallidal neurons in the normal and the tremulous 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine vervet model of parkinsonism. J Neurosci 20:8559–8571

    CAS  PubMed  Google Scholar 

  • Rosin B et al (2011) Closed-loop deep brain stimulation is superior in ameliorating parkinsonism. Neuron 72:370–384. doi:10.1016/j.neuron.2011.08.023

    Article  CAS  PubMed  Google Scholar 

  • Scheel-Kruger J, Magelund G (1981) GABA in the entopeduncular nucleus and the subthalamic nucleus participates in mediating dopaminergic striatal output functions. Life Sci 29:1555–1562

    Article  CAS  PubMed  Google Scholar 

  • Scheel-Kruger J, Magelund G, Olianas M (1981a) The role of GABA in the basal ganglia and limbic system for behaviour. Adv Biochem Psychopharmacol 29:23–36

    CAS  PubMed  Google Scholar 

  • Scheel-Kruger J, Magelund J, Olianas MC (1981b) Role of GABA in the striatal output system: globus pallidus, nucleus entopeduncularis, substantia nigra and nucleus subthalamicus. In: DiChiara G, Gessa GL (eds) GABA and the basal ganglia. Raven Press, New York, pp 165–186

    Google Scholar 

  • Schlenstedt C, Shalash A, Muthuraman M, Falk D, Witt K, Deuschl G (2017) Effect of high-frequency subthalamic neurostimulation on gait and freezing of gait in Parkinson’s disease: a systematic review and meta-analysis. Eur J Neurol 24:18–26. doi:10.1111/ene.13167

    Article  CAS  PubMed  Google Scholar 

  • Siegfried J, Lippitz B (1994a) Bilateral chronic electrostimulation of ventroposterolateral pallidum: a new therapeutic approach for alleviating all parkinsonian symptoms. Neurosurgery 35:1126–1129 (discussion 1129–1130)

    Article  CAS  PubMed  Google Scholar 

  • Siegfried J, Lippitz B (1994b) Chronic electrical stimulation of the VL–VPL complex and of the pallidum in the treatment of movement disorders: personal experience since 1982. Stereotact Funct Neurosurg 62:71–75

    Article  CAS  PubMed  Google Scholar 

  • Smith Y, Parent A (1988) Neurons of the subthalamic nucleus in primates display glutamate but not GABA immunoreactivity. Brain Res 453:353–356

    Article  CAS  PubMed  Google Scholar 

  • Smith Y, Villalba RM, Raju DV (2009) Striatal spine plasticity in Parkinson’s disease: pathological or not? Parkinsonism Relat Disord 15(Suppl 3):S156–S161. doi:10.1016/S1353-8020(09)70805-3

    Article  PubMed  PubMed Central  Google Scholar 

  • Strick PL, Dum RP, Picard N (1995) Macro-organization of the circuits connecting the basal ganglia with the cortical motor areas. In: Houk JC, Davis JL, Beiser DG (eds) Models of information processing in the basal ganglia. MIT Press, Cambridge, pp 117–130

    Google Scholar 

  • Svennilson E, Torvik A, Lowe R, Leksell L (1960) Treatment of parkinsonism by stereotactic thermolesions in the pallidal region. A clinical evaluation of 81 cases. Acta Psychiatr Neurol Scand 35:358–377

    Article  CAS  Google Scholar 

  • Tass PA, Qin L, Hauptmann C, Dovero S, Bezard E, Boraud T, Meissner WG (2012) Coordinated reset has sustained aftereffects in Parkinsonian monkeys. Ann Neurol 72:816–820. doi:10.1002/ana.23663

    Article  PubMed  Google Scholar 

  • Tinkhauser G, Pogosyan A, Little S, Beudel M, Herz DM, Tan H, Brown P (2017) The modulatory effect of adaptive deep brain stimulation on beta bursts in Parkinson’s disease. Brain 140:1053–1067. doi:10.1093/brain/awx010

    Article  PubMed  PubMed Central  Google Scholar 

  • Tisch S et al (2007) Pallidal stimulation modifies after-effects of paired associative stimulation on motor cortex excitability in primary generalised dystonia. Exp Neurol 206:80–85

    Article  PubMed  Google Scholar 

  • Turner RS, Grafton ST, Votaw JR, DeLong MR, Hoffman JM (1998) Motor subcircuits mediating the control of movement velocity: a PET study. J Neurophys 80:2162–2176

    Article  CAS  Google Scholar 

  • Turner RS, Desmurget M, Grethe J, Crutcher MD, Grafton ST (2003) Motor subcircuits mediating the control of movement extent and speed. J Neurophysiol 90:3958–3966. doi:10.1152/jn.00323.2003

    Article  PubMed  Google Scholar 

  • Villalba RM, Mathai A, Smith Y (2015) Morphological changes of glutamatergic synapses in animal models of Parkinson’s disease. Front Neuroanat 9:117. doi:10.3389/fnana.2015.00117

    Article  PubMed  PubMed Central  Google Scholar 

  • Vitek JL (2002) Deep brain stimulation for Parkinson’s disease. A critical re-evaluation of STN versus GPi DBS. Stereotact Funct Neurosurg 78:119–131

    Article  PubMed  Google Scholar 

  • von Santha K (1932) Hemiballismus und Corpus Luysi (Anatomische und pathophysiologische Beiträge zur Frage des Hemiballismus nebst Versuch einer somatotopischen Lokalisation im Corpus Luysi). Zeitschrift fuer die gesamte Neurologie und Psychiatrie 141:321–342

    Article  Google Scholar 

  • Wang J, Nebeck S, Muralidharan A, Johnson MD, Vitek JL, Baker KB (2016) Coordinated reset deep brain stimulation of subthalamic nucleus produces long-lasting, dose-dependent motor improvements in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine non-human primate model of parkinsonism. Brain Stimul. doi:10.1016/j.brs.2016.03.014

    Google Scholar 

  • Weaver FM et al (2012) Randomized trial of deep brain stimulation for Parkinson disease: thirty-six-month outcomes. Neurology 79:55–65. doi:10.1212/WNL.0b013e31825dcdc1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weiss D, Breit S, Wachter T, Plewnia C, Gharabaghi A, Kruger R (2011) Combined stimulation of the substantia nigra pars reticulata and the subthalamic nucleus is effective in hypokinetic gait disturbance in Parkinson’s disease. J Neurol 258:1183–1185. doi:10.1007/s00415-011-5906-3

    Article  PubMed  Google Scholar 

  • Weiss D et al (2013) Nigral stimulation for resistant axial motor impairment in Parkinson’s disease? A randomized controlled trial. Brain 136:2098–2108. doi:10.1093/brain/awt122

    Article  PubMed  PubMed Central  Google Scholar 

  • Whittier JR, Mettler FA (1949) Studies on the subthalamus of the rhesus monkey; hyperkinesia and other physiologic effects of subthalamic lesions; with special reference to the subthalamic nucleus of Luys. J Comp Neurol 90:319–372

    Article  CAS  PubMed  Google Scholar 

  • Wichmann T, Soares J (2006) Neuronal firing before and after burst discharges in the monkey basal ganglia is predictably patterned in the normal state and altered in parkinsonism. J Neurophys 95:2120–2133. doi:10.1152/jn.01013.2005

    Article  CAS  Google Scholar 

  • Wichmann T, Bergman H, DeLong MR (1994) The primate subthalamic nucleus. III. Changes in motor behavior and neuronal activity in the internal pallidum induced by subthalamic inactivation in the MPTP model of parkinsonism. J Neurophys 72:521–530

    Article  CAS  Google Scholar 

  • Yoon HH et al (2014) Optogenetic inactivation of the subthalamic nucleus improves forelimb akinesia in a rat model of Parkinson disease. Neurosurgery 74:533–541. doi:10.1227/NEU.0000000000000297

    Article  PubMed  Google Scholar 

  • Yousif N, Bhatt H, Bain PG, Nandi D, Seemungal BM (2016) The effect of pedunculopontine nucleus deep brain stimulation on postural sway and vestibular perception. Eur J Neurol 23:668–670. doi:10.1111/ene.12947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeng BY, Iravani MM, Jackson MJ, Rose S, Parent A, Jenner P (2010) Morphological changes in serotoninergic neurites in the striatum and globus pallidus in levodopa primed MPTP treated common marmosets with dyskinesia. Neurobiol Dis 40:599–607. doi:10.1016/j.nbd.2010.08.004

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Wang ZI, Baker KB, Vitek JL (2012) Effect of globus pallidus internus stimulation on neuronal activity in the pedunculopontine tegmental nucleus in the primate model of Parkinson’s disease. Exp Neurol 233:575–580. doi:10.1016/j.expneurol.2011.07.007

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge support from NIH Grants R01-NS062876 (TW) and P50-NS098685, as well as support from the American Parkinson’s Disease Foundation (TW and MRD). The work was also supported by a Grant from the NIH Office of Research Infrastructure Programs OD P51-OD011132 to the Yerkes National Primate Research Center (TW). HB received support from the European Research Council (ERC), the Israel Science Foundation (ISF), the German Israel Science Foundation (GIF), the Canadian Friends of the Hebrew University, the Rosetrees, Adelis and Vorst Foundations and the Simone and Bernard Guttman Chair in Brain Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Wichmann.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wichmann, T., Bergman, H. & DeLong, M.R. Basal ganglia, movement disorders and deep brain stimulation: advances made through non-human primate research. J Neural Transm 125, 419–430 (2018). https://doi.org/10.1007/s00702-017-1736-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-017-1736-5

Keywords

Navigation