Skip to main content
Log in

Globus pallidus internus neuronal activity: a comparative study of linear and non-linear features in patients with dystonia or Parkinson’s disease

  • Neurology and Preclinical Neurological Studies - Original Article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

Movement disorders such as Parkinson’s disease (PD) and dystonia are associated with alterations of basal ganglia motor circuits and abnormal neuronal activity in the output nucleus, the globus pallidus internus (GPi). This study aims to compare the electrophysiological hallmarks for PD and dystonia in the linear and non-linear time stamp domains in patients who underwent microelectrode recordings during functional stereotactic surgery for deep brain stimulation (DBS) or pallidotomy. We analyzed single-unit neuronal activity in the posteroventral lateral region of the GPi in awake patients prior to pallidotomy or the implantation of DBS electrodes in 29 patients with PD (N = 83 neurons) and 13 patients with dystonia (N = 41 neurons) under comparable conditions. The discharge rate and the instantaneous frequency of the GPi in dystonia patients were significantly lower than in PD patients (P < 0.001), while the total number of bursts, the percentage of spikes in bursts and the mean duration of bursts were higher (P < 0.001). Further, non-linear analysis revealed higher irregularity or entropy in the data streams of GPi neurons of PD patients compared to the dystonia patients group (P < 0.001). This study indicates that both linear and non-linear features of neuronal activity in the human GPi differ between PD and dystonia. Our results may serve as the basis for future studies on linear and non-linear analysis of neuronal firing patterns in various movement disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adler A, Joshua M, Rivlin-Etzion M et al (2010) Neurons in both pallidal segments change their firing properties similarly prior to closure of the eyes. J Neurophysiol 103:346–359. doi:10.1152/jn.00765.2009

    Article  PubMed  Google Scholar 

  • Alam M, Heissler HE, Schwabe K, Krauss JK (2012) Deep brain stimulation of the pedunculopontine tegmental nucleus modulates neuronal hyperactivity and enhanced beta oscillatory activity of the subthalamic nucleus in the rat 6-hydroxydopamine model. Exp Neurol 233:233–242. doi:10.1016/j.expneurol.2011.10.006

    Article  CAS  PubMed  Google Scholar 

  • Alam M, Schwabe K, Lütjens G et al (2015) Comparative characterization of single cell activity in the globus pallidus internus of patients with dystonia or Tourette syndrome. J Neural Transm 122:687–699. doi:10.1007/s00702-014-1277-0

    Article  PubMed  Google Scholar 

  • Baizabal Carvallo JF, Mostile G, Almaguer M et al (2012) Deep brain stimulation hardware complications in patients with movement disorders: risk factors and clinical correlations. Stereotact Funct Neurosurg 90:300–306. doi:10.1159/000338222

    Article  PubMed  Google Scholar 

  • Bennay M, Gernert M, Richter A (2001) Spontaneous remission of paroxysmal dystonia coincides with normalization of entopeduncular activity in dt(SZ) mutants. J Neurosci 21:RC153

    CAS  PubMed  Google Scholar 

  • Bergman H, Wichmann T, Karmon B, DeLong MR (1994) The primate subthalamic nucleus. II. Neuronal activity in the MPTP model of parkinsonism. J Neurophysiol 72:507–520

    CAS  PubMed  Google Scholar 

  • Blahak C, Wöhrle JC, Capelle HH et al (2008) Health-related quality of life in segmental dystonia is improved by bilateral pallidal stimulation. J Neurol 255:178–182. doi:10.1007/s00415-008-0614-3

    Article  CAS  PubMed  Google Scholar 

  • Boraud T, Bezard E, Guehl D et al (1998) Effects of L-DOPA on neuronal activity of the globus pallidus externalis (GPe) and globus pallidus internalis (GPi) in the MPTP-treated monkey. Brain Res 787:157–160

    Article  CAS  PubMed  Google Scholar 

  • Boraud T, Bezard E, Bioulac B, Gross CE (2002) From single extracellular unit recording in experimental and human Parkinsonism to the development of a functional concept of the role played by the basal ganglia in motor control. Prog Neurobiol 66:265–283

    Article  PubMed  Google Scholar 

  • Chacron MJ, Longtin A, Maler L (2001) Negative interspike interval correlations increase the neuronal capacity for encoding time-dependent stimuli. J Neurosci 21:5328–5343

    CAS  PubMed  Google Scholar 

  • Chiken S, Shashidharan P, Nambu A (2008) Cortically evoked long-lasting inhibition of pallidal neurons in a transgenic mouse model of dystonia. J Neurosci 28:13967–13977. doi:10.1523/JNEUROSCI.3834-08.2008

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Darbin O, Soares J, Wichmann T (2006) Nonlinear analysis of discharge patterns in monkey basal ganglia. Brain Res 1118:84–93. doi:10.1016/j.brainres.2006.08.027

    Article  CAS  PubMed  Google Scholar 

  • Diamond A, Shahed J, Azher S et al (2006) Globus pallidus deep brain stimulation in dystonia. Mov Disord 21:692–695. doi:10.1002/mds.20767

    Article  PubMed  Google Scholar 

  • Dorval AD, Grill WM (2014) Deep brain stimulation of the subthalamic nucleus reestablishes neuronal information transmission in the 6-OHDA rat model of parkinsonism. J Neurophysiol 111:1949–1959. doi:10.1152/jn.00713.2013

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dorval AD, Russo GS, Hashimoto T et al (2008) Deep brain stimulation reduces neuronal entropy in the MPTP-primate model of Parkinson’s disease. J Neurophysiol 100:2807–2818. doi:10.1152/jn.90763.2008

    Article  PubMed Central  PubMed  Google Scholar 

  • Filion M, Tremblay L (1991) Abnormal spontaneous activity of globus pallidus neurons in monkeys with MPTP-induced parkinsonism. Brain Res 547:142–151

    CAS  PubMed  Google Scholar 

  • Hutchison WD, Lang AE, Dostrovsky JO, Lozano AM (2003) Pallidal neuronal activity: implications for models of dystonia. Ann Neurol 53:480–488. doi:10.1002/ana.10474

    Article  PubMed  Google Scholar 

  • Hutchison WD, Dostrovsky JO, Walters JR et al (2004) Neuronal oscillations in the basal ganglia and movement disorders: evidence from whole animal and human recordings. J Neurosci 24:9240–9243. doi:10.1523/JNEUROSCI.3366-04.2004

    Article  CAS  PubMed  Google Scholar 

  • Kaneoke Y, Vitek JL (1996) Burst and oscillation as disparate neuronal properties. J Neurosci Methods 68:211–223

    Article  CAS  PubMed  Google Scholar 

  • Kostal L, Lansky P, Pokora O (2011) Variability measures of positive random variables. PLoS One 6:e21998. doi:10.1371/journal.pone.0021998

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kozma R, Bressler S, Perlovsky L, Venayagamoorthy GK (2009) Advances in neural networks research: an introduction. Neural Netw 22:489–490. doi:10.1016/j.neunet.2009.07.008

    Article  PubMed  Google Scholar 

  • Krauss J, Grossmann R (2001) Principles and techniques of movement disorders surgery. In: Krauss JK, Jankovic J, Grossman RG (eds) Surgery for Parkinson’s disease and movement disorders. Lippincott, Williama & Wilkins, Philadelphia, pp 74–109

  • Krauss JK, Akeyson EW, Giam P, Jankovic J (1996) Propofol-induced dyskinesias in Parkinson’s disease. Anesth Analg 83:420–422

    CAS  PubMed  Google Scholar 

  • Labarre D, Meissner W, Boraud T (2008) Measure of the regularity of events in stochastic point processes, application to neuron activity analysis. In: IEEE international conference on acoustics, speech and signal processing, 2008. ICASSP 2008, pp 489–492. doi:10.1109/ICASSP.2008.4517653

  • Lafreniere-Roula M, Darbin O, Hutchison WD et al (2010) Apomorphine reduces subthalamic neuronal entropy in parkinsonian patients. Exp Neurol 225:455–458

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lai EC, Jankovic J, Krauss JK et al (2000) Long-term efficacy of posteroventral pallidotomy in the treatment of Parkinson’s disease. Neurology 55:1218–1222

    Article  CAS  PubMed  Google Scholar 

  • Levy R, Dostrovsky JO, Lang AE et al (2001) Effects of apomorphine on subthalamic nucleus and globus pallidus internus neurons in patients with Parkinson’s disease. J Neurophysiol 86:249–260

    CAS  PubMed  Google Scholar 

  • Li W, Jia D, Wang J-L et al (2008) Deterministic dynamics in neuronal discharge from pallidotomy targets. J Int Med Res 36:979–985

    Article  CAS  PubMed  Google Scholar 

  • Lim J, Sanghera MK, Darbin O et al (2010) Nonlinear temporal organization of neuronal discharge in the basal ganglia of Parkinson’s disease patients. Exp Neurol 224:542–544

    Article  PubMed  Google Scholar 

  • Liu C, Liu C, Shao P et al (2011) Comparison of different threshold values r for approximate entropy: application to investigate the heart rate variability between heart failure and healthy control groups. Physiol Meas 32:167–180. doi:10.1088/0967-3334/32/2/002

    Article  PubMed  Google Scholar 

  • Lourens MAJ, Meijer HGE, Contarino MF et al (2013) Functional neuronal activity and connectivity within the subthalamic nucleus in Parkinson’s disease. Clin Neurophysiol 124:967–981. doi:10.1016/j.clinph.2012.10.018

    Article  CAS  PubMed  Google Scholar 

  • Lozano AM, Hutchison WD (2002) Microelectrode recordings in the pallidum. Mov Disord 17(Suppl 3):S150–S154

    Article  PubMed  Google Scholar 

  • Lu S, Chen X, Kanters JK et al (2008) Automatic selection of the threshold value R for approximate entropy. IEEE Trans Biomed Eng 55:1966–1972. doi:10.1109/TBME.2008.919870

    Article  PubMed  Google Scholar 

  • Mpitsos GJ, Burton RM, Creech HC, Soinila SO (1988) Evidence for chaos in spike trains of neurons that generate rhythmic motor patterns. Brain Res Bull 21:529–538

    Article  CAS  PubMed  Google Scholar 

  • Nambu A, Chiken S, Shashidharan P et al (2011) Reduced pallidal output causes dystonia. Front Syst Neurosci 5:89. doi:10.3389/fnsys.2011.00089

    Article  PubMed Central  PubMed  Google Scholar 

  • Nawrot MP (2010) Analysis and interpretation of interval and count variability in neural spike trains. In: Grün S, Rotter S (eds) Analysis of parallel spike trains. Springer series in computational neuroscience, vol 7. Springer, New York, NY, pp 37–58. doi:10.1007/978-1-4419-5675-0_3

  • Obeso JA, Rodriguez-Oroz MC, Rodriguez M et al (2000) Pathophysiologic basis of surgery for Parkinson’s disease. Neurology 55:S7–S12

    Article  CAS  PubMed  Google Scholar 

  • Pincus SM (1991) Approximate entropy as a measure of system complexity. Proc Natl Acad Sci USA 88:2297–2301. doi:10.1073/pnas.88.6.2297

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pincus SM (2001) Assessing serial irregularity and its implications for health. Ann N Y Acad Sci 954:245–267

    Article  CAS  PubMed  Google Scholar 

  • Pincus SM, Keefe DL (1992) Quantification of hormone pulsatility via an approximate entropy algorithm. Am J Physiol 262:E741–E754

    CAS  PubMed  Google Scholar 

  • Rodríguez M, Pereda E, González J et al (2003) Neuronal activity in the substantia nigra in the anaesthetized rat has fractal characteristics. Evidence for firing-code patterns in the basal ganglia. Exp Brain Res 151:167–172. doi:10.1007/s00221-003-1442-4

    Article  PubMed  Google Scholar 

  • Rumpel R, Alam M, Klein A et al (2013) Neuronal firing activity and gene expression changes in the subthalamic nucleus after transplantation of dopamine neurons in hemiparkinsonian rats. Neurobiol Dis 59:230–243

    Article  CAS  PubMed  Google Scholar 

  • Sanghera MK, Grossman RG, Kalhorn CG et al (2003) Basal ganglia neuronal discharge in primary and secondary dystonia in patients undergoing pallidotomy. Neurosurgery 52:1358–1370 (discussion 1370–3)

    Article  PubMed  Google Scholar 

  • Shannon CE (1948) A mathematical theory of communication. Bell Syst Tech J 27:379–423. doi:10.1002/j.1538-7305.1948.tb01338.x

    Article  Google Scholar 

  • Silberstein P, Oliviero A, Di Lazzaro V et al (2005) Oscillatory pallidal local field potential activity inversely correlates with limb dyskinesias in Parkinson’s disease. Exp Neurol 194:523–529. doi:10.1016/j.expneurol.2005.03.014

    Article  PubMed  Google Scholar 

  • Silver RA (2010) Neuronal arithmetic. Nat Rev Neurosci 11:474–489. doi:10.1038/nrn2864

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Starr PA, Rau GM, Davis V et al (2005) Spontaneous pallidal neuronal activity in human dystonia: comparison with Parkinson’s disease and normal macaque. J Neurophysiol 93:3165–3176. doi:10.1152/jn.00971.2004

    Article  PubMed  Google Scholar 

  • Tang JKH, Moro E, Lozano AM et al (2005) Firing rates of pallidal neurons are similar in Huntington’s and Parkinson’s disease patients. Exp Brain Res 166:230–236. doi:10.1007/s00221-005-2359-x

    Article  PubMed  Google Scholar 

  • Tang JKH, Moro E, Mahant N et al (2007) Neuronal firing rates and patterns in the globus pallidus internus of patients with cervical dystonia differ from those with Parkinson’s disease. J Neurophysiol 98:720–729. doi:10.1152/jn.01107.2006

    Article  PubMed  Google Scholar 

  • Venkatraghavan L, Rakhman E, Krishna V et al (2015) The effect of general anesthesia on the microelectrode recordings from pallidal neurons in patients with dystonia. J Neurosurg Anesthesiol. doi:10.1097/ANA.0000000000000200

    Google Scholar 

  • Vitek JL (2002) Pathophysiology of dystonia: a neuronal model. Mov Disord 17(Suppl 3):S49–S62

    Article  PubMed  Google Scholar 

  • Vitek JL, Chockkan V, Zhang JY et al (1999) Neuronal activity in the basal ganglia in patients with generalized dystonia and hemiballismus. Ann Neurol 46:22–35

    Article  CAS  PubMed  Google Scholar 

  • Weinberger M, Hutchison WD, Alavi M et al (2012) Oscillatory activity in the globus pallidus internus: comparison between Parkinson’s disease and dystonia. Clin Neurophysiol 123:358–368. doi:10.1016/j.clinph.2011.07.029

    Article  PubMed  Google Scholar 

  • Wichmann T, Bergman H, Starr PA et al (1999) Comparison of MPTP-induced changes in spontaneous neuronal discharge in the internal pallidal segment and in the substantia nigra pars reticulata in primates. Exp Brain Res 125:397–409

    Article  CAS  PubMed  Google Scholar 

  • Woehrle JC, Blahak C, Kekelia K et al (2009) Chronic deep brain stimulation for segmental dystonia. Stereotact Funct Neurosurg 87:379–384. doi:10.1159/000249819

    Article  PubMed  Google Scholar 

  • Yentes JM, Hunt N, Schmid KK et al (2013) The appropriate use of approximate entropy and sample entropy with short data sets. Ann Biomed Eng 41:349–365. doi:10.1007/s10439-012-0668-3

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was funded, in part, by a Grant to Manjit K. Sanghera from the Plummer Foundation, Scott & White Hospital, Temple TX. The National Parkinson Foundation has supported the Center of Excellence, directed by Dr. Jankovic at Baylor College of Medicine. The authors would like to thank Dr. Jongil Lim for his valuable assistance in analyzing some of the non-linear features of neuronal activity.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Alam.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

M. Alam and M. K. Sanghera contributed equally.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alam, M., Sanghera, M.K., Schwabe, K. et al. Globus pallidus internus neuronal activity: a comparative study of linear and non-linear features in patients with dystonia or Parkinson’s disease. J Neural Transm 123, 231–240 (2016). https://doi.org/10.1007/s00702-015-1484-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-015-1484-3

Keywords

Navigation