Skip to main content
Log in

On the transmethylation hypothesis: stress, N,N-dimethyltryptamine, and positive symptoms of psychosis

  • Translational Neurosciences - Review Article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

Past research suggests a relationship between stress and positive symptoms of psychosis. However, the biological substrate of this relationship remains unknown. According to the transmethylation hypothesis, schizophrenia could result from a biochemical disruption in the stress mechanism. This biochemical disruption would lead to the production of a substance that would account for the symptoms of psychosis. Moreover, some studies have tested endogenous N,N-dimethyltryptamine (DMT) in the context of the transmethylation hypothesis. Stress has been found to elevate DMT levels in rodents. Also, elevated DMT levels have been associated with positive features of psychosis in psychiatric patients. Additionally, healthy participants treated with exogenous DMT experience predominantly positive symptoms of psychosis. The present paper examines endogenous DMT as a possible biological mediator of the relationship between stress and positive symptoms of psychosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Barker S, Monti J, Christian S (1981) N,N-dimethyltryptamine: an endogenous hallucinogen. Int Rev Neurobiol 22:83–110

    CAS  PubMed  Google Scholar 

  • Barker S, McIlhenny E, Strassman R (2012) A critical review of reports of endogenous psychedelic N,N-dimethyltryptamines in humans: 1955–2010. Drug Test Anal 4(7–8):617–635. doi:10.1002/dta.422

    Article  CAS  PubMed  Google Scholar 

  • Bøgesø KP, Bang-Andersen B (2003) Dopamine and serotonin receptor and transporter ligands. In: Liljefors T, Krogsgaard-Larsen P, Madsen U (eds) Textbook of drug design and discovery, 3rd edn. CRC Press, Florida, pp 336–367

  • Böszörményi ZZ, St Szára (1958) Dimethyltryptamine experiments with psychotics. J Ment Sci 104(435):445–453

    PubMed  Google Scholar 

  • Bracht T, Horn H, Strik W et al (2014) White matter pathway organization of the reward system is related to positive and negative symptoms in schizophrenia. Schizophr Res 153(1–3):136–142

    Article  PubMed  Google Scholar 

  • Bunzow J, Sonders M, Arttamangkul S et al (2001) Amphetamine, 3,4-methylenedioxymethamphetamine, lysergic acid diethylamide, and metabolites of the catecholamine neurotransmitters are agonists of a rat trace amine receptor. Mol Pharmacol 60(6):1181–1188

    CAS  PubMed  Google Scholar 

  • Callaway JC, Airaksinen MM, McKenna DJ, Brito GS, Grob CS (1994) Platelet serotonin uptake sites increased in drinkers of ayahuasca. Psychopharmacology 116(3):385–387. doi:10.1007/BF02245347

    Article  CAS  PubMed  Google Scholar 

  • Carter OL, Hasler F, Pettigrew JD, Wallis GM, Liu GB, Vollenweider FX (2007) Psilocybin links binocular rivalry switch rate to attention and subjective arousal levels in humans. Psychopharmacology 195(3):415–424. doi:10.1007/s00213-007-0930-9

    Article  CAS  PubMed  Google Scholar 

  • Collip D, Nicolson NA, Lardinois M, Lataster T, Van Os J, Myin-Germeys I (2011) Daily cortisol, stress reactivity and psychotic experiences in individuals at above average genetic risk for psychosis. Psychol Med 41(11):2305–2315

    Article  CAS  PubMed  Google Scholar 

  • Cozzi NV, Gopalakrishnan A, Anderson LL, Feih JT, Shulgin AT, Daley PF, Ruoho AE (2009) Dimethyltryptamine and other hallucinogenic tryptamines exhibit substrate behavior at the serotonin uptake transporter and the vesicle monoamine transporter. J Neural Transm 116(12):1591–1599. doi:10.1007/s00702-009-0308-8

    Article  CAS  PubMed  Google Scholar 

  • Cozzi NV, Mavlyutov TA, Thompson MA, Ruoho AE (2011) Indolethylamine N-methyltransferase expression in primate nervous tissue. Soc Neurosci Abstr 37(840):19

    Google Scholar 

  • Craig AD (2009) Disembodied hallucinatory voices: comment on Sommer et al., 2008. Brain 132(10). doi:10.1093/brain/awp038

  • Curzon G, Joseph M, Knott P (1972) Effects of immobilization and food deprivation on rat brain tryptophan metabolism. J Neurochem 19(8):1967–1974

    Article  CAS  PubMed  Google Scholar 

  • Deliganis A, Pierce P, Peroutka S (1991) Differential interactions of dimethyltryptamine (DMT) with 5-HT1A and 5-HT2 receptors. Biochem Pharmacol 41(11):1739–1744

    Article  CAS  PubMed  Google Scholar 

  • Doyle AA, Hucklebridge FF, Evans PP, Clow AA (1996) Urinary output of endogenous monoamine oxidase inhibitory activity is related to everyday stress. Life Sci 58(20):1723–1730. doi:10.1016/0024-3205(96)00153-1

    Article  CAS  PubMed  Google Scholar 

  • Fontanilla D, Johannessen M, Hajipour A, Cozzi N, Jackson M, Ruoho A (2009) The hallucinogen N,N-dimethyltryptamine (DMT) is an endogenous sigma-1 receptor regulator. Science 323(5916):934–937. doi:10.1126/science.1166127

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • González-Maeso J, Weisstaub N, Zhou M et al (2007) Hallucinogens recruit specific cortical 5-HT(2A) receptor-mediated signaling pathways to affect behavior. Neuron 53(3):439–452

    Article  PubMed  Google Scholar 

  • Gouzoulis-Mayfrank E, Heekeren K, Neukirch A, Stoll M, Stock C, Obradovic M, Kovar K (2005) Psychological effects of (S)-ketamine and N,N-dimethyltryptamine (DMT): a double-blind, cross-over study in healthy volunteers. Pharmacopsychiatry 38(6):301–311

    Article  CAS  PubMed  Google Scholar 

  • Govitrapong P, Mukda S, Turakitwanakan W, Dumrongphol H, Chindaduangratn C, Sanvarinda Y (2002) Platelet serotonin transporter in schizophrenic patients with and without neuroleptic treatment. Neurochem Int 41(4):209–216

    Article  CAS  PubMed  Google Scholar 

  • Harrison REW, Christian ST (1984) Individual housing stress elevates brain and adrenal tryptamine content. In: Boulton AA (ed) Neurobiology of the trace amines. Humana Press, New Jersey, pp 249–255

    Chapter  Google Scholar 

  • Haubrich D, Wang P (1977) N’N-dimethyltryptamine lowers rat brain acetylcholine and dopamine. Brain Res 131(1):158–161

    Article  CAS  PubMed  Google Scholar 

  • Horga G, Fernández-Egea E, Mané A et al (2014) Brain metabolism during hallucination-like auditory stimulation in schizophrenia. PLoS One 9(1):1–9. doi:10.1371/journal.pone.0084987

    Article  Google Scholar 

  • Jacob M, Presti D (2005) Endogenous psychoactive tryptamines reconsidered: an anxiolytic role for dimethyltryptamine. Med Hypotheses 64(5):930–937

    Article  CAS  PubMed  Google Scholar 

  • Jenner P, Marsden C, Thanki C (1978) Behavioural changes induced by N,N-dimethyltryptamine in rodents [proceedings]. Br J Pharmacol 63(2):380

    Google Scholar 

  • Kapur S (2003) Psychosis as a state of aberrant salience: a framework linking biology, phenomenology, and pharmacology in schizophrenia. Am J Psychiatry 160(1):13–23

    Article  PubMed  Google Scholar 

  • Lataster TT, Valmaggia LL, Lardinois MM, van Os JJ, Myin-Germeys II (2013) Increased stress reactivity: a mechanism specifically associated with the positive symptoms of psychotic disorder. Psychol Med 43(7):1389–1400. doi:10.1017/S0033291712002279

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto R, Pouw B (2000) Correlation between neuroleptic binding to sigma(1) and sigma(2) receptors and acute dystonic reactions. Eur J Pharmacol 401(2):155–160

    Article  CAS  PubMed  Google Scholar 

  • Meltzer H, Massey B, Horiguchi M (2012) Serotonin receptors as targets for drugs useful to treat psychosis and cognitive impairment in schizophrenia. Curr Pharm Biotechnol 13(8):1572–1586

    Article  CAS  PubMed  Google Scholar 

  • Mizrahi R et al (2012) Increased stress-induced dopamine release in psychosis. Biol Psychiatry 71(6):561–567

    Article  CAS  PubMed  Google Scholar 

  • Murray R, Oon M, Rodnight R, Birley J, Smith A (1979) Increased excretion of dimethyltryptamine and certain features of psychosis: a possible association. Arch Gen Psychiatry 36(6):644–649

    Article  CAS  PubMed  Google Scholar 

  • Myin-Germeys I, van Os J (2007) Stress-reactivity in psychosis: evidence for an affective pathway to psychosis. Clin Psychol Rev 27(4):409–424. doi:10.1016/j.cpr.2006.09.005

    Article  PubMed  Google Scholar 

  • Myin-Germeys II, Delespaul Ph, van Os JJ (2005) Behavioural sensitization to daily life stress in psychosis. Psychol Med 35(5):733–741. doi:10.1017/S0033291704004179

    Article  CAS  PubMed  Google Scholar 

  • Osmond H, Smythies J (1952) Schizophrenia: a new approach. J Ment Sci 98:309–315

    CAS  PubMed  Google Scholar 

  • Palaniyappan L, Liddle PF (2012) Does the salience network play a cardinal role in psychosis? An emerging hypothesis of insular dysfunction. J Psychiatry Neurosci 37(1):17–27. doi:10.1503/jpn.100176

    Article  PubMed Central  PubMed  Google Scholar 

  • Palaniyappan LL, Mallikarjun PP, Joseph VV, White TP, Liddle PF (2011) Reality distortion is related to the structure of the salience network in schizophrenia. Psychol Med 41(8):1701–1708. doi:10.1017/S0033291710002205

    Article  CAS  PubMed  Google Scholar 

  • Pehek EA, Nocjar C, Roth BL, Byrd TA, Mabrouk OS (2006) Evidence for the preferential involvement of 5-HT2A serotonin receptors in stress- and drug-induced dopamine release in the rat medial prefrontal cortex. Neuropsychopharmacology 31(2):265–277. doi:10.1038/sj.npp.1300819

    Article  CAS  PubMed  Google Scholar 

  • Pomilio A, Vitale A, Ciprian-Ollivier J, Cetkovich-Bakmas M, Gómez R, Vázquez G (1999) Ayahoasca: an experimental psychosis that mirrors the transmethylation hypothesis of schizophrenia. J Ethnopharmacol 65(1):29–51

    Article  CAS  PubMed  Google Scholar 

  • Riba J, Romero S, Grasa E, Mena E, Carrió I, Barbanoj M (2006) Increased frontal and paralimbic activation following ayahuasca, the pan-amazonian inebriant. Psychopharmacology 186(1):93–98. doi:10.1007/s00213-006-0358-7

    Article  CAS  PubMed  Google Scholar 

  • Siegel R (1984) Hostage hallucinations. Visual imagery induced by isolation and life-threatening stress. J Nerv Ment Dis 172(5):264–272

    Article  CAS  PubMed  Google Scholar 

  • Smith TL (1977) Increased synthesis of striatal dopamine by N,N-dimethyltryptamine. Life Sci 21(11):1597–1601

    Article  CAS  PubMed  Google Scholar 

  • Smith R, Canton H, Barrett R, Sanders-Bush E (1998) Agonist properties of N,N-dimethyltryptamine at serotonin 5-HT2A and 5-HT2C receptors. Pharmacol Biochem Behav 61(3):323–330

    Article  CAS  PubMed  Google Scholar 

  • Sommer I et al (2008) Auditory verbal hallucinations predominantly activate the right inferior frontal area. Brain 131(12):3169–3177. doi:10.1093/brain/awn251

    Article  PubMed  Google Scholar 

  • Spatz N, Spatz H, Mesones Arroyo H, Rosan T, Brengio F (1993) Elimination of N,N-dimethyltryptamine by urine. Acta Psiquiatr Psicol Am Lat 39(3):212–216

    CAS  PubMed  Google Scholar 

  • Strahilevitz M, Narasimhachari N, Fischer G, Meltzer H, Himwich H (1975) Indolethylamine-N-methyltransferase activity in psychiatric patients and controls. Biol Psychiatry 10(3):287–302

    CAS  PubMed  Google Scholar 

  • Strassman RJ, Qualls CR (1994) Dose-response study of N,N-dimethyltryptamine in humans: I. neuroendocrine, autonomic, and cardiovascular effects. Arch Gen Psychiatry 51(2):85–97

    Article  CAS  PubMed  Google Scholar 

  • Strassman RJ, Qualls CR, Uhlenhuth EH, Kellner R (1994) Dose-response study of N,N-dimethyltryptamine in humans: II. Subjective effects and preliminary results of a new rating scale. Arch Gen Psychiatry 51(2):98–108. doi:10.1001/archpsyc.1994.03950020022002

    Article  CAS  PubMed  Google Scholar 

  • Su T, Hayashi T, Vaupel D (2009) When the endogenous hallucinogenic trace amine N,N-dimethyltryptamine meets the sigma-1 receptor. Sci Signal 2(61):12. doi:10.1126/scisignal.261pe12

    Article  Google Scholar 

  • Taylor SF, Liberzon I, Decker LR, Koeppe RA (2002) A functional anatomic study of emotion in schizophrenia. Schizophr Res 58(2–3):159–172. doi:10.1016/S0920-9964(01)00403-0

    Article  PubMed  Google Scholar 

  • Thompson M, Moon E, Kim U, Xu J, Siciliano M, Weinshilboum R (1999) Human indolethylamine N-methyltransferase: cDNA cloning and expression, gene cloning, and chromosomal localization. Genomics 61(3):285–297

    Article  CAS  PubMed  Google Scholar 

  • Tillinger A, Sollas A, Serova LI, Kvetnansky R, Sabban EL (2010) Vesicular monoamine transporters (VMATs) in adrenal chromaffin cells: stress-triggered induction of VMAT2 and expression in epinephrine synthesizing cells. Cell Mol Neurobiol 30(8):1459–1465. doi:10.1007/s10571-010-9575-z

    Article  CAS  PubMed  Google Scholar 

  • Uebelhack R, Franke L, Seidel K (1983) Methylated and unmethylated indolamine in the cisternal fluid in acute endogenous psychoses. Biomed Biochim Acta 42(10):1343–1346

    CAS  PubMed  Google Scholar 

  • Vitale AA, Ollivier JC, Vitale V, Romero E, Pomillo AB (2010) Estudio clínico de marcadores de hipermetilación indólica en las alteraciones de la percepción. Acta Bioquím Clín Latinoam 44(4):627–642. ISSN 0325-2957. http://www.scielo.org.ar/scielo.php?script=sci_arttext&pid=S0325-29572010000400003&lng=es&nrm=iso. Accessed 26 November 2013

  • Vitale A, Pomilio A, Cañellas C, Vitale M, Putz E, Ciprian-Ollivier J (2011) In vivo long-term kinetics of radiolabeled N,N-dimethyltryptamine and tryptamine. J Nucl Med 52(6):970–977. doi:10.2967/jnumed.110.083246

    Article  CAS  PubMed  Google Scholar 

  • Waldmeier P, Maître L (1977) Neurochemical investigations of the interaction of N,N-dimethyltryptamine with dopaminergic system in rat brain. Psychopharmacology 52(2):137–144

    Article  CAS  PubMed  Google Scholar 

  • Wallach JV (2009) Endogenous hallucinogens as ligands of the trace amine receptors: a possible role in sensory perception. Med Hypotheses 72(1):91–94

    Article  CAS  PubMed  Google Scholar 

  • Warren JM, Dham-Nayyar P, Alexander J (2013) Recreational use of naturally occurring dimethyltryptamine—contributing to psychosis? Aust N Z J Psychiatry 47(4):398–399

    Article  PubMed  Google Scholar 

  • Wyatt R, Saavedra JM, Belmaker R, Cohen S, Pollin W (1973) The dimethyltryptamine-forming enzyme in blood platelets: a study in monozygotic twins discordant for schizophrenia. Am J Psychiatry 130(12):1359–1361

    Article  CAS  PubMed  Google Scholar 

  • Zucker M, Valevski A, Weizman A, Rehavi M (2002) Increased platelet vesicular monoamine transporter density in adult schizophrenia patients. Eur Neuropsychopharmacol 12(4):343–347

    Article  CAS  PubMed  Google Scholar 

  • Zureick JL, Meltzer HY (1988) Platelet MAO activity in hallucinating and paranoid schizophrenics: a review and meta-analysis. Biol Psychiatry 24(1):63–78. doi:10.1016/0006-3223(88)90122-9

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dionysios Grammenos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grammenos, D., Barker, S.A. On the transmethylation hypothesis: stress, N,N-dimethyltryptamine, and positive symptoms of psychosis. J Neural Transm 122, 733–739 (2015). https://doi.org/10.1007/s00702-014-1329-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-014-1329-5

Keywords

Navigation