Skip to main content

Advertisement

Log in

Nine-month follow-up of the insulin receptor signalling cascade in the brain of streptozotocin rat model of sporadic Alzheimer’s disease

  • Neurology and Preclinical Neurological Studies - Original Article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

Sporadic Alzheimer disease (sAD) is associated with impairment of insulin receptor (IR) signalling in the brain. Rats used to model sAD develop insulin-resistant brain state following intracerebroventricular treatment with a betacytotoxic drug streptozotocin (STZ-icv). Brain IR signalling has been explored usually at only one time point in periods ≤3 months after the STZ-icv administration. We have investigated insulin signalling in the rat hippocampus at five time points in periods ≤9 months after STZ-icv treatment. Male Wistar rats were given vehicle (control)- or STZ (3 mg/kg)-icv injection and killed 0.5, 1, 3, 6 and 9 months afterwards. Insulin-1 (Ins-1), IR, phospho- and total (p/t)-glycogen synthase kinase 3-β (GSK-3β), p/t-tau and insulin degrading enzyme (IDE) mRNA and/or protein were measured. Acute upregulation of tau and IR mRNA (p < 0.05) was followed by a pronounced downregulation of Ins-1, IR and IDE mRNA (p < 0.05) in the course of time. Acute decrement in p/t-tau and p/t-GSK-3β ratios (p < 0.05) was followed by increment in both ratios (3–6 months, p < 0.05) after which p/t-tau ratio demonstrated a steep rise and p/t-GSK-3β ratio a steep fall up to 9 months (p < 0.05). Acute decline in IDE and IR expression (p < 0.05) was followed by a slow progression of the former and a slow recovery of the latter in 3–9 months. Results indicate a biphasic pattern in time dependency of onset and progression of changes in brain insulin signalling of STZ-icv model (partly reversible acute toxicity and chronic AD-like changes) which should be considered when using this model as a tool in translational sAD research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Agrawal R, Mishra B, Tyagi E, Nath C, Shukla R (2010) Effect of curcumin on brain insulin receptors and memory functions in STZ (ICV) induced dementia model of rat. Pharmacol Res 61:247–252

    Article  CAS  PubMed  Google Scholar 

  • Agrawal R, Tyagi E, Shukla R, Nath C (2011) Insulin receptor signaling in rat hippocampus: a study in STZ (ICV) induced memory deficit model. Eur Neuropsychopharmacol 21:261–273

    Article  CAS  PubMed  Google Scholar 

  • Blennow K, de Leon MJ, Zetterberg H (2006) Alzheimer’s disease: seminar. Lancet 368:387–403

    Article  CAS  PubMed  Google Scholar 

  • Cardoso S, Correia S, Santos RX, Carvalho C, Santos MS, Oliveira CR, Perry G, Smith MA, Zhu X, Moreira PI (2009) Insulin is a two-edged knife on the brain. J Alzheimers Dis 18:483–507

    CAS  PubMed  Google Scholar 

  • Chen Y, Liang Z, Blanchard J, Dai CL, Sun S, Lee MH, Grundke-Iqbal I, Iqbal K, Liu F, Gong CX (2013) A non-transgenic mouse model (icv-STZ mouse) of Alzheimer’s disease: similarities to and differences from the transgenic model (3xTg-AD mouse). Mol Neurobiol 47:711–725

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cook DG, Leverenz JB, McMillan PJ, Kulstad JJ, Ericksen S, Roth RA, Schellenberg GD, Jin LW, Kovacina KS, Craft S (2003) Reduced hippocampal insulin-degrading enzyme in late-onset Alzheimer’s disease is associated with the apolipoprotein E-epsilon4 allele. Am J Pathol 162:313–319

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Czech MP, Corvera S (1999) Signaling mechanisms that regulate glucose transport. J Biol Chem 274:1865–1868

    Article  CAS  PubMed  Google Scholar 

  • de la Monte SM, Tong M, Lester-Coll N, Plater M Jr, Wands JR (2006) Therapeutic rescue of neurodegeneration in experimental type 3 diabetes: relevance to Alzheimer’s disease. J Alzheimers Dis 10:89–109

    PubMed  Google Scholar 

  • Deng Y, Li B, Liu Ying, Iqbal K, Grundke-Iqbal I, Gong CX (2009) Dysregulation of Insulin signaling, glucose transporters, O-GlcNAcylation, and phosphorylation of tau and neurofilaments in the brain: implication for Alzheimer’s Disease. Am J Pathol 175:2089–2098

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Doble BW, Woodgett JR (2003) GSK-3: tricks of the trade for a multi-tasking kinase. J Cell Sci 116:1175–1186

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Duelli R, Schrock H, Kuschinsky W, Hoyer S (1994) Intracerebroventricular injection of streptozotocin induces discrete local changes in cerebral glucose utilization in rats. Int J Dev Neurosci 12:737–743

    Article  CAS  PubMed  Google Scholar 

  • Ferrer I, Blanco R, Carmona M, Ribera R, Goutan E, Puig B, Rey MJ, Cardozo A, Viñals F, Ribalta T (2001) Phosphorylated map kinase (ERK1, ERK2) expression is associated with early tau deposition in neurones and glial cells, but not with increased nuclear DNA vulnerability and cell death, in Alzheimer disease, Pick’s disease, progressive supranuclear palsy and corticobasal degeneration. Brain Pathol 11:144–158

    Article  CAS  PubMed  Google Scholar 

  • Frölich L, Blum-Degen D, Bernstein HG, Engelsberger S, Humrich J, Laufer S, Muschner D, Thalheimer A, Türk A, Hoyer S, Zöchling R, Boissl KW, Jellinger K, Riederer P (1998) Brain insulin and insulin receptors in aging and Alzheimer’s disease. J Neural Transm 105:423–438

    Article  PubMed  Google Scholar 

  • Gasparini L, Xu H (2003) Potential roles of insulin and IGF-1 in Alzheimer’s disease. Trends Neurosci 26:404–406

    Article  CAS  PubMed  Google Scholar 

  • Goedert M, Spillantini MG (2006) A century of Alzheimer’s disease. Science 314:777–781

    Article  CAS  PubMed  Google Scholar 

  • Grünblatt E, Salkovic-Petrisic M, Osmanovic J, Riederer P, Hoyer S (2007) Brain insulin system dysfunction in streptozotocin intracerebroventricularly treated rats generates hyperphosphorylated tau protein. J Neurochem 101:757–770

    Article  PubMed  Google Scholar 

  • Grundke-Iqbal I, Iqbal K, Tung YC, Quinlan M, Wisniewski HM, Binder LI (1986) Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology. Proc Natl Acad Sci U S A. 83:4913–4917

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Henneberg N, Hoyer S (1995) Desensitization of the neuronal insulin receptor: a new approach in the etiopathogenesis of late-onset sporadic dementia of the Alzheimer type (SDAT)? Arch Gerontol Geriatr 21:63–74

    Article  CAS  PubMed  Google Scholar 

  • Heo JH, Lee SR, Lee ST, Lee KM, Oh JH, Jang DP, Chang KT, Cho ZH (2011) Spatial distribution of glucose hypometabolism induced by intracerebroventricular streptozotocin in monkeys. J Alzheimers Dis 25:517–523

    PubMed  Google Scholar 

  • Hong M, Chen DC, Klein PS, Lee VM (1997) Lithium reduces tau phosphorylation by inhibition of glycogen synthase kinase-3. J Biol Chem 272:25326–25332

    Article  CAS  PubMed  Google Scholar 

  • Hoyer S (1994) Neurodegeneration, Alzheimer’s disease, and beta-amyloid toxicity. Life Sci 55:1977–1983

    Article  CAS  PubMed  Google Scholar 

  • Hoyer S (1998) Is sporadic Alzheimer disease the brain type of non-insulin dependent diabetes mellitus? A challenging hypothesis. J Neural Transm 105:415–422

    Article  CAS  PubMed  Google Scholar 

  • Hoyer S (2002) The brain insulin signal transduction system and sporadic (type II) Alzheimer disease: an update. J Neural Transm 109:341–360

    Article  CAS  PubMed  Google Scholar 

  • Hoyer S (2004) Glucose metabolism and insulin receptor signal transduction in Alzheimer disease. Eur J Pharmacol 490:115–125

    Article  CAS  PubMed  Google Scholar 

  • Ishiguro K, Shiratsuchi A, Sato S, Omori A, Arioka M, Kobayashi S, Uchida T, Imahori K (1993) Glycogen synthase kinase 3 beta is identical to tau protein kinase I generation several epitopes of paired helical filaments. FEBS Letter 325:167–172

    Article  CAS  Google Scholar 

  • Kadowaki T, Kasuga M, Akanuma Y, Ezaki O, Takaku F (1984) Decreased autophosphorylation of the insulin receptor-kinase in streptozotocin-diabetic rats. J Biol Chem 259:14208–14216

    CAS  PubMed  Google Scholar 

  • Lannert H, Hoyer S (1998) Intracerebroventricular administration of streptozotocin causes long-term diminutions in learning and memory abilities and in cerebral energy metabolism in adult rats. Behav Neurosci 112:1199–1208

    Article  CAS  PubMed  Google Scholar 

  • Lee Y, Kim YH, Park SJ, Huh JW, Kim SH, Kim SU, Kim JS, Jeong KJ, Lee KM, Hong Y, Lee SR, Chang KT (2014) Insulin/IGF signaling-related gene expression in the brain of a sporadic Alzheimer’s disease monkey model induced by intracerebroventricular injection of streptozotocin. J Alzheimers Dis 38:251–267

    PubMed  Google Scholar 

  • Lester-Coll N, Rivera EJ, Soscia SJ, Doiron K, Wands JR, de la Monte SM (2006) Intracerebral streptozotocin model of type 3 diabetes: relevance to sporadic Alzheimer’s disease. J Alzheimers Dis 9:13–33

    CAS  PubMed  Google Scholar 

  • Liao MH, Xiang YC, Huang JY, Tao RR, Tian Y, Ye WF, Zhang GS, Lu YM, Ahmed MM, Liu ZR, Fukunaga K, Han F (2013) The disturbance of hippocampal CaMKII/PKA/PKC phosphorylation in early experimental diabetes mellitus. CNS Neurosci Ther 19:329–336

    Article  CAS  PubMed  Google Scholar 

  • Liu P, Zou L, Jiao Q, Chi T, Ji X, Qi Y, Xu Q, Wang L (2013) Xanthoceraside attenuates learning and memory deficits via improving insulin signaling in STZ-induced AD rats. Neurosci Lett 543:115–120

    Article  CAS  PubMed  Google Scholar 

  • McCubrey JA, Steelman LS, Bertrand FE, Davis NM, Sokolosky M, Abrams SL, Montalto G, D’Assoro AB, Libra M, Nicoletti F, Maestro R, Basecke J, Rakus D, Gizak A, Demidenko ZN, Cocco L, Martelli AM, Cervello M (2014) GSK-3 as potential target for therapeutic intervention in cancer. Oncotarget 5:2881–2911

    PubMed Central  PubMed  Google Scholar 

  • Nelson PT, Braak H, Markesbery WR (2009) Neuropathology and cognitive impairment in Alzheimer disease: a complex but coherent relationship. J Neuropathol Exp Neurol 68:1–14

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nitsch R, Hoyer S (1991) Local action of the diabetogenic drug, streptozotocin, on glucose and energy metabolism in rat brain cortex. Neurosci Lett 128:199–202

    Article  CAS  PubMed  Google Scholar 

  • Noble EP, Wurtman RJ, Axelrod J (1967) A simple and rapid method for injecting H3-norepinephrine into the lateral ventricle of the ratbrain. Life Sci 6:281–291

    Article  CAS  PubMed  Google Scholar 

  • Park SJ, Kim YH, Lee Y, Kim KM, Kim HS, Lee SR, Kim SU, Kim SH, Kim JS, Jeong KJ, Lee KM, Huh JW, Chang KT (2013) Selection of appropriate reference genes for RT-qPCR analysis in a streptozotocin-induced Alzheimer’s disease model of cynomolgus monkeys (Macaca fascicularis). PLoS One 8:e56034

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Paz K, Voliovitch H, Hadari YR, Roberts CT Jr, LeRoith D, Zick Y (1996) Interaction between the insulin receptor and its downstream effectors. Use of individually expressed receptor domains for structure/function analysis. J Biol Chem 271:6998–7003

    Article  CAS  PubMed  Google Scholar 

  • Pei JJ, Tanaka T, Tung YC, Braak E, Iqbala K, Grundke-Iqbala I (1997) Distribution, levels, and activity of glycogen synthase kinase 3 in the Alzheimer disease brain. J Neuropathol Exp Neurol 56:70–78

    Article  CAS  PubMed  Google Scholar 

  • Plasche K, Hoyer S (1993) Action of the diabetogenic drug streptozotocin on glycolytic metabolism in adult rat brain cortex and hippocampus. Int J Dev Neurosci 11:477–483

    Article  Google Scholar 

  • Plattner F, Angelo M, Giese KP (2006) The roles of cyclin-dependent kinase 5 and glycogen synthase kinase 3 in tau hyperphosphorylation. J Biol Chem 281:25457–25465

    Article  CAS  PubMed  Google Scholar 

  • Qiu WQ, Folstein MF (2006) Insulin, insulin-degrading enzyme and amyloid-beta peptide in Alzheimer’s disease: review and hypothesis. Neurobiol Aging 27:190–198

    Article  CAS  PubMed  Google Scholar 

  • Rickle A, Bogdanovic N, Volkman I, Winblad B, Ravid R, Cowburn RF (2004) Akt activity in Alzheimer’s disease and other neurodegenerative disorders. Neuro Rep 15:955–959

    CAS  Google Scholar 

  • Salkovic-Petrisic M, Tribl F, Schmidt M, Hoyer S, Riederer P (2006) Alzheimer-like changes in protein kinase B and glycogen synthase kinase-3 in rat frontal cortex and hippocampus after damage to the insulin signalling pathway. J Neurochem 96:1005–1015

    Article  CAS  PubMed  Google Scholar 

  • Salkovic-Petrisic M, Osmanovic-Barilar J, Brückner MK, Hoyer S, Arendt T, Riederer P (2011) Cerebral amyloid angiopathy in streptozotocin rat model of sporadic Alzheimer’s disease: a long-term follow up study. J Neural Transm 118:765–772

    Article  CAS  PubMed  Google Scholar 

  • Saltiel AR, Pessin JE (2002) Insulin signaling pathways in time and space. Trends Cell Biol 12:65–71

    Article  CAS  PubMed  Google Scholar 

  • Santos TO, Mazucanti CH, Xavier GF, Torrão AS (2012) Early and late neurodegeneration and memory disruption after intracerebroventricular streptozotocin. Physiol Behav 107:401–413

    Article  CAS  PubMed  Google Scholar 

  • Schneppenheim R, Budde U, Dahlmann N, Rautenberg P (1991) Luminography—a new, highly sensitive visualization method for electrophoresis. Electrophoresis 1:367–372

    Article  Google Scholar 

  • Shingo AS, Kanabayashi T, Murase T, Kito S (2012) Cognitive decline in STZ-3 V rats is largely due to dysfunctional insulin signalling through the dentate gyrus. Behav Brain Res 229:378–383

    Article  CAS  PubMed  Google Scholar 

  • Shonesy BC, Thiruchelvam K, Parameshwaran K, Rahman EA, Karuppagounder SS, Huggins KW, Pinkert CA, Amin R, Dhanasekaran M, Suppiramaniam V (2012) Central insulin resistance and synaptic dysfunction in intracerebroventricular-streptozotocin injected rodents. Neurobiol Aging 33(430):e5–18

    PubMed  Google Scholar 

  • Sodhi RK, Singh N (2013) All-trans retinoic acid rescues memory deficits and neuropathological changes in mouse model of streptozotocin-induced dementia of Alzheimer’s type. Prog Neuropsychopharmacol Biol Psychiatry 40:38–46

    Article  CAS  PubMed  Google Scholar 

  • Steen E, Terry BM, Rivera EJ, Cannon JL, Neely TR, Tavares R, Xu XJ, Wands JR, de la Monte SM (2005) Impaired insulin and insulin-like growth factor expression and signaling mechanisms in Alzheimer′s disease-is this type 3 diabetes? J Alzheimer′s Dis 7:63–80

    CAS  Google Scholar 

  • Szkudelski T (2001) The mechanism of alloxan and streptozotocin action in B cell of the rat pancreas. Physiol Res 50:537–546

    CAS  PubMed  Google Scholar 

  • Takahashi M, Iseki E, Kosaka K (2000) Cdk5 and munc-18/p67 co-localization in early stage neurofibrillary tangles-bearing neurons in Alzheimer type dementia brains. J Neurol Sci 172:63–69

    Article  CAS  PubMed  Google Scholar 

  • Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3:RESEARCH0034

  • Wang S, Zhou SL, Min FY, Ma JJ, Shi XJ, Bereczki E, Wu J (2014) mTOR-mediated hyperphosphorylation of tau in the hippocampus is involved in cognitive deficits in streptozotocin-induced diabetic mice. Metab Brain Dis 29:729–736

    Article  CAS  PubMed  Google Scholar 

  • Wen Y, Planel E, Herman M, Figueroa HY, Wang L, Liu L, Lau LF, Yu WH, Duff KE (2008) Interplay between cyclin-dependent kinase 5 and glycogen synthase kinase 3 beta mediated by neuregulin signaling leads to differential effects on tau phosphorylation and amyloid precursor protein processing. J Neurosci 28:2624–2632

    Article  CAS  PubMed  Google Scholar 

  • Yang W, Ma J, Liu Z, Lu Y, Hu B, Yu H (2014) Effect of naringenin on brain insulin signaling and cognitive functions in ICV-STZ induced dementia model of rats. Neurol Sci 35:741–751

    Article  PubMed  Google Scholar 

  • Zhao WQ, Alkon DL (2001) Role of insulin and insulin receptor in learning and memory. Mol Cell Endocrinol 177:125–134

    Article  CAS  PubMed  Google Scholar 

  • Zhao L, Teter B, Morihara T, Lim GP, Ambegaokar SS, Ubeda OJ, Frautschy SA, Cole GM (2004a) Insulin-degrading enzyme as a downstream target of insulin receptor signaling cascade: implications for Alzheimer’s disease intervention. J Neurosci 24:11120–11126

    Article  CAS  PubMed  Google Scholar 

  • Zhao WQ, Chen H, Quon MJ, Alkon DL (2004b) Insulin and the insulin receptor in experimental models of learning and memory. Eur J Pharmacol 490:71–81

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The research has been done in collaboration with Professor Siegfried Hoyer whom we dedicate this paper and whose ideas shall carry us a long way in the future sAD research. Supported by The Croatian Ministry of Science, Education and Sports (project No 108-10800003-0020) and German Academic Exchange Service (DAAD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Osmanovic Barilar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Osmanovic Barilar, J., Knezovic, A., Grünblatt, E. et al. Nine-month follow-up of the insulin receptor signalling cascade in the brain of streptozotocin rat model of sporadic Alzheimer’s disease. J Neural Transm 122, 565–576 (2015). https://doi.org/10.1007/s00702-014-1323-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-014-1323-y

Keywords

Navigation