Skip to main content

Advertisement

Log in

Effects of GDF5 overexpression on embryonic rat dopaminergic neurones in vitro and in vivo

  • Basic Neurosciences, Genetics and Immunology - Original Articles
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

Transplantation of embryonic dopaminergic neurones has shown promise for the treatment of Parkinson’s disease (PD), but this approach is limited by the poor survival of the transplanted cells. Exogenous dopaminergic neurotrophic factors such as growth/differentiation factor 5 (GDF5) have been found to enhance the survival of transplanted dopaminergic neurones. However, this approach is limited by the rapid degradation of such factors in vivo; thus, methods for long-term delivery of these factors are under investigation. The present study shows, using optimised lipid-mediated transfection procedures, that overexpression of GDF5 significantly improves the survival of dopaminergic neurones in cultures of embryonic day (E) 13 rat ventral mesencephalon (VM) and protects them against 6-hydroxydopamine (6-OHDA)-induced toxicity. In another experiment, E13 VM cells were transfected with GDF5 after 1 day in vitro (DIV), then transplanted into 6-OHDA-lesioned adult rat striata after 2 DIV. The survival of these E13 VM dopaminergic neurones after transfection and transplantation was as least as high as that of freshly dissected E14 VM dopaminergic neurones, demonstrating that transfection was not detrimental to these cells. Furthermore, GDF5-overexpressing E13 VM transplants significantly reduced amphetamine-induced rotational asymmetry in the lesioned rats. This study shows that lipid-mediated transfection in vitro prior to transplantation is a valid approach for the introduction of neurotrophic proteins such as GDF5, as well as lending further support to the potential use of GDF5 in neuroprotective therapy for PD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

6-OHDA:

6-Hydroxydopamine

DIV:

Day in vitro

E:

Embryonic day

GDF5:

Growth/differentiation factor 5

GDNF:

Glial cell line-derived neurotrophic factor

GFAP:

Glial fibrillary acidic protein

PD:

Parkinson’s disease

PI:

Propidium iodide

TGF-β:

Transforming growth factor-β

TH:

Tyrosine hydroxylase

VM:

Ventral mesencephalon

References

  • Alberi L, Sgado P, Simon HH (2004) Engrailed genes are cell-autonomously required to prevent apoptosis in mesencephalic dopaminergic neurons. Dev Dis 131:3229–3236

    CAS  Google Scholar 

  • Apostolides C, Sanford E, Hong M, Mendez I (1993) Glial cell line-derived neurotrophic factor improves intrastriatal graft survival of stored dopaminergic cells. Exp Neurol 124:401–412

    Article  Google Scholar 

  • Bauer M, Kristensen BW, Meyer M, Gasser T, Widmer HR, Zimmer J, Ueffing M (2006) Toxic effects of lipid-mediated gene transfer in ventral mesencephalic explant cultures. Basic Clin Pharmacol Toxicol 98:395–400

    Article  CAS  PubMed  Google Scholar 

  • Bjorklund A (2005) Cell therapy for Parkinson’s disease: problems and prospects. Novartis Found Symp 265:174–186

    Article  PubMed  Google Scholar 

  • Bjorklund A, Kirik D, Rosenblad C, Georgievska B, Lundberg C, Mandel RJ (2000) Towards a neuroprotective gene therapy for Parkinson’s disease: use of adenovirus, AAV and lentivirus vectors for gene transfer of GDNF to the nigrostriatal system in the rat Parkinson model. Brain Res 886:82–98

    Article  CAS  PubMed  Google Scholar 

  • Bjorklund A, Dunnett SB, Brundin P, Stoessl AJ, Freed CR, Breeze RE, Levivier M, Peschanski M, Studer L, Barker R (2003) Neural transplantation for the treatment of Parkinson’s disease. Lancet Neurol 2:437–445

    Article  PubMed  Google Scholar 

  • Brundin P, Hagell P (2001) The neurobiology of cell transplantation in Parkinson’s disease. Clin Neurosci Res 1:507–520

    Article  CAS  Google Scholar 

  • Brundin P, Karlsson J, Emgard M, Schierle GS, Hansson O, Petersen A, Castilho RF (2000) Improving the survival of grafted dopaminergic neurons: a review over current approaches. Cell Transpl 9:179–195

    CAS  Google Scholar 

  • Choi-Lundberg DL, Bohn MC (1995) Ontogeny and distribution of glial cell line-derived neurotrophic factor (GDNF) mRNA in rat. Brain Res Dev Brain Res 85:80–88

    Article  CAS  PubMed  Google Scholar 

  • Clayton KB, Sullivan AM (2007) Differential effects of GDF5 on the medial and lateral rat ventral mesencephalon. Neurosci Lett 427:132–137

    Article  CAS  PubMed  Google Scholar 

  • Deierborg T, Soulet D, Roybon L, Hall V, Brundin P (2008) Emerging restorative treatments for Parkinson’s disease. Prog Neurobiol 85:407–432

    Article  CAS  PubMed  Google Scholar 

  • Dunnett SB, Bjorklund A, Lindvall O (2001) Cell therapy in Parkinson’s disease—stop or go? Nat Rev Neurosci 2:365–369

    Article  CAS  PubMed  Google Scholar 

  • Ericson C, Georgievska B, Lundberg C (2005) Ex vivo gene delivery of GDNF using primary astrocytes transduced with a lentiviral vector provides neuroprotection in a rat model of Parkinson’s disease. Eur J Neurosci 22:2755–2764

    Article  PubMed  Google Scholar 

  • Freed CR, Greene PE, Breeze RE, Tsai WY, DuMouchel W, Kao R, Dillon S, Winfield H, Culver S, Trojanowski JQ, Eidelberg D, Fahn S (2001) Transplantation of embryonic dopamine neurons for severe Parkinson’s disease. New Engl J Med 344:710–719

    Article  CAS  PubMed  Google Scholar 

  • Gill SS, Patel NK, Hotton GR, O’Sullivan K, McCarter R, Bunnage M, Brooks DJ, Svendsen CN, Heywood P (2003) Direct brain infusion of glial cell line-derived neurotrophic factor in Parkinson disease. Nat Med 9:589–595

    Article  CAS  PubMed  Google Scholar 

  • Hagell P, Brundin P (2001) Cell survival and clinical outcome following intrastriatal transplantation in Parkinson disease. J Neuropathol Exp Neurol 60:741–752

    CAS  PubMed  Google Scholar 

  • Hagell P, Cenci MA (2005) Dyskinesias and dopamine cell replacement in Parkinson’s disease: a clinical perspective. Brain Res Bull 68:4–15

    Article  CAS  PubMed  Google Scholar 

  • Hoffer BJ, Hoffman A, Bowenkamp K, Huettl P, Hudson J, Martin D, Lin LF, Gerhardt GA (1994) Glial cell line-derived neurotrophic factor reverses toxin-induced injury to midbrain dopaminergic neurons in vivo. Neurosci Lett 182:107–111

    Article  CAS  PubMed  Google Scholar 

  • Hotten G, Neidhardt H, Jacobowsky B, Pohl J (1994) Cloning and expression of recombinant human growth/differentiation factor 5. Biochem Biophys Res Commun 204:646–652

    Article  CAS  PubMed  Google Scholar 

  • Hou JG, Lin LF, Mytilineou C (1996) Glial cell line-derived neurotrophic factor exerts neurotrophic effects on dopaminergic neurons in vitro and promotes their survival and regrowth after damage by 1-methyl-4-phenylpyridinium. J Neurochem 66:74–82

    Article  CAS  PubMed  Google Scholar 

  • Howard CV, Reed MG (1998) Unbiased stereology. Bios Scientific Publishers, Oxford, UK

    Google Scholar 

  • Hurley FM, Costello DJ, Sullivan AM (2004) Neuroprotective effects of delayed administration of growth/differentiation factor-5 in the partial lesion model of Parkinson’s disease. Exp Neurol 185:281–289

    Article  CAS  PubMed  Google Scholar 

  • Kearns CM, Gash DM (1995) GDNF protects nigral dopamine neurons against 6-hydroxydopamine in vivo. Brain Res 672:104–111

    Article  CAS  PubMed  Google Scholar 

  • Kordower JH (2003) In vivo gene delivery of glial cell line-derived neurotrophic factor for Parkinson’s disease. Ann Neurol 53:S120–S132

    Article  CAS  PubMed  Google Scholar 

  • Kordower JH, Chu Y, Hauser RA, Freeman TB, Olanow C (2008a) Lewy body-like pathology in long-term embryonic nigral transplants in Parkinson’s disease. Nat Med 14:504–506

    Article  CAS  PubMed  Google Scholar 

  • Kordower JH, Chu Y, Hauser RA, Olanow CW, Freeman TB (2008b) Transplanted dopaminergic neurons develop PD pathologic changes: a second case report. Mov Disord 23:2303–2306

    Article  PubMed  Google Scholar 

  • Krieglstein K, Suter-Crazzolara C, Fischer WH, Unsicker K (1995a) TGF-β superfamily members promote the survival of midbrain dopaminergic neurones and protect them against MPP+ toxicity. EMBO J 14:736–742

    CAS  PubMed  Google Scholar 

  • Krieglstein K, Suter-Crazzolara C, Hötten G, Pohl J, Unsicker K (1995b) Trophic and protective effects of growth/differentiation factor 5, a member of the transforming growth factor-β superfamily, on midbrain dopaminergic neurones. J Neurosci Res 42:724–732

    Article  CAS  PubMed  Google Scholar 

  • Lang AE, Gill S, Patel NK, Lozano A, Nutt JG, Penn R, Brooks DJ, Hotton G, Moro E, Heywood P, Brodsky MA, Burchiel K, Kelly P, Dalvi A, Scott B, Stacy M, Turner D, Wooten VG, Elias WJ, Laws ER, Dhawan V, Stoessl AJ, Matcham J, Coffey RJ, Traub M (2006) Randomized controlled trial of intraputamenal glial cell line-derived neurotrophic factor infusion in Parkinson disease. Ann Neurol 59:459–466

    Article  CAS  PubMed  Google Scholar 

  • Li JY, Englund E, Holton JL, Soulet D, Hagell P, Lees AJ, Lashley T, Quinn NP, Rehncrona S, Björklund A, Widner H, Revesz T, Lindvall O, Brundin P (2008) Lewy bodies in grafted neurons in subjects with Parkinson’s disease suggest host-to-graft disease propagation. Nat Med 14:501–503

    Article  CAS  PubMed  Google Scholar 

  • Lin LF, Doherty DH, Lile JD, Bektesh S, Collins F (1993) GDNF: a glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons. Science 260:1130–1132

    Article  CAS  PubMed  Google Scholar 

  • Lindvall O, Hagell P (2000) Clinical observations after neural transplantation in Parkinson’s disease. Prog Brain Res 127:299–320

    Article  CAS  PubMed  Google Scholar 

  • Mayhew TM (1992) A review of recent advances in stereology for quantifying neural structure. J Neurocytol 21:313–328

    Article  CAS  PubMed  Google Scholar 

  • Morrison PF, Lonser RR, Oldfield EH (2007) Convective delivery of glial cell line-derived neurotrophic factor in the human putamen. J Neurosurg 107:74–83

    Article  PubMed  Google Scholar 

  • Nakao N, Frodl EM, Duan W-M, Widner H, Brundin P (1994) Lazaroids improve the survival of grafted rat embryonic dopamine neurons. Proc Natl Acad Sci USA 91:12408–12412

    Article  CAS  PubMed  Google Scholar 

  • Nutt JG, Burchiel KJ, Comella CL, Jankovic J, Lang AE, Laws ER Jr, Lozano AM, Penn RD, Simpson RK Jr, Stacy M, Wooten GF (2003) Randomized, double-blind trial of glial cell line-derived neurotrophic factor (GDNF) in PD. Neurology 60:69–73

    CAS  PubMed  Google Scholar 

  • O’Keeffe GW, Dockery P, Sullivan AM (2004a) Effects of growth/differentiation factor-5 on the survival and morphology of embryonic rat midbrain dopaminergic neurones in vitro. J Neurocytol 33:479–488

    Article  PubMed  Google Scholar 

  • O’Keeffe GW, Hanke M, Pohl J, Sullivan AM (2004b) Expression of the dopaminergic neurotrophin growth/differentiation factor-5 in the developing and adult rat brain. Dev Brain Res 151:199–202

    Article  CAS  Google Scholar 

  • O’Neill MJ, Messenger MJ, Lakics V, Murray TK, Karran EH, Szekeres PG, Nisenbaum ES, Merchant KM (2007) Neuroreplacement, growth factor, and small molecule neurotrophic approaches for treating Parkinson’s disease. Int Rev Neurobiol 77:179–217

    Article  PubMed  Google Scholar 

  • Ohki EC, Tilkins ML, Ciccarone VC, Price PJ (2001) Improving the transfection efficiency of post-mitotic neurons. J Neurosci Methods 112:95–99

    Article  CAS  PubMed  Google Scholar 

  • Olanow CW, Goetz CG, Kordower JH, Stoessl AJ, Sossi V, Brin MF, Shannon KM, Nauert GM, Perl DP, Godbold J, Freeman TB (2003) A double-blind controlled trial of bilateral fetal nigral transplantation in Parkinson’s disease. Ann Neurol 54:403–414

    Article  PubMed  Google Scholar 

  • Patel NK, Bunnage M, Plaha P, Svendsen CN, Heywood P, Gill SS (2005) Intraputamenal infusion of glial cell line-derived neurotrophic factor in PD: a two-year outcome study. Ann Neurol 57:298–302

    Article  CAS  PubMed  Google Scholar 

  • Paxinos G, Watson C (1988) The rat brain in stereotaxic coordinates, 4th edn. Academic Press, San Diego

    Google Scholar 

  • Piccini P, Pavese N, Hagell P, Reimar J, Bjorklund A, Oertel WH, Quinn NP, Brooks DJ, Lindvall O (2005) Factors affecting the clinical outcome after neural transplantation in Parkinson’s disease. Brain 128:2977–2986

    Article  PubMed  Google Scholar 

  • Rosenblad C, Martinez-Serrano A, Bjorklund A (1996) Glial cell line-derived neurotrophic factor increases survival, growth and function of intrastriatal fetal nigral dopaminergic grafts. Neuroscience 75:979–985

    Article  CAS  PubMed  Google Scholar 

  • Sauer H, Rosenblad C, Björklund A (1995) Glial cell line-derived neurotrophic factor but not transforming growth factor beta 3 prevents delayed degeneration of nigral dopaminergic neurons following striatal 6-hydroxydopamine lesion. Proc Natl Acad Sci USA 92:8935–8939

    Article  CAS  PubMed  Google Scholar 

  • Sayles M, Jain M, Barker RA (2004) The cellular repair of the brain in Parkinson’s disease—past, present and future. Transpl Immunol 12:321–342

    Article  CAS  PubMed  Google Scholar 

  • Sherer TB, Fiske BK, Svendsen CN, Lang AE, Langston JW (2006) Crossroads in GDNF therapy for Parkinson’s disease. Mov Disord 21:136–241

    Article  PubMed  Google Scholar 

  • Sinclair SR, Svendsen CN, Torres EM, Martin D, Fawcett JW, Dunnett SB (1996) GDNF enhances dopaminergic cell survival and fibre outgrowth in embryonic nigral grafts. Neuroreport 7:2547–2552

    Article  CAS  PubMed  Google Scholar 

  • Slevin JT, Gerhardt GA, Smith CD, Gash DM, Kryscio R, Young B (2005) Improvement of bilateral motor functions in patients with Parkinson disease through the unilateral intraputaminal infusion of glial cell line-derived neurotrophic factor. J Neurosurg 102:216–222

    Article  CAS  PubMed  Google Scholar 

  • Sortwell CE (2003) Strategies for the augmentation of grafted dopamine neuron survival. Front Biosci 8:S522–S532

    Article  CAS  PubMed  Google Scholar 

  • Sullivan AM, Opacka-Juffry J, Hötten G, Pohl J, Blunt SB (1997) Growth/differentiation factor 5 protects nigrostriatal dopaminergic neurones in a rat model of Parkinson’s disease. Neurosci Lett 233:73–76

    Article  CAS  PubMed  Google Scholar 

  • Sullivan AM, Opacka-Juffry J, Blunt SB (1998a) Long-term protection of the rat nigrostriatal dopaminergic system by glial cell line-derived neurotrophic factor against 6-hydroxydopamine in vivo. Eur J Neurosci 10:57–63

    Article  CAS  PubMed  Google Scholar 

  • Sullivan AM, Pohl J, Blunt SB (1998b) Growth/differentiation factor 5 and glial cell line-derived neurotrophic factor enhance survival and function of dopaminergic grafts in a rat model of Parkinson’s disease. Eur J Neurosci 10:3681–3688

    Article  CAS  PubMed  Google Scholar 

  • Sullivan AM, Opacka-Juffry J, Pohl J, Blunt SB (1999) Neuroprotective protective effects of growth/differentiation factor 5 depend on the site of administration. Brain Res 818:176–179

    Article  CAS  PubMed  Google Scholar 

  • Tatarewicz SM, Wei X, Gupta S, Masterman D, Swanson SJ, Moxness MS (2007) Development of a maturing T-cell-mediated immune response in patients with idiopathic Parkinson’s disease receiving r-metHuGDNF via continuous intraputaminal infusion. J Clin Immunol 27:620–627

    Article  PubMed  Google Scholar 

  • Tomac A, Lindqvist E, Lin LF, Ogren SO, Young D, Hoffer BJ, Olson L (1995) Protection and repair of the nigrostriatal dopaminergic system by GDNF in vivo. Nature 373:335–339

    Article  CAS  PubMed  Google Scholar 

  • Torres EM, Weyrauch UM, Sutcliffe R, Dunnett SB (2008) A rat embryo staging scale for the generation of donor tissue for neural transplantation. Cell Transpl 17:535–542

    Article  CAS  Google Scholar 

  • Toulouse A, Sullivan AM (2008) Progress in Parkinson’s disease—where do we stand? Prog Neurobiol 85:376–392

    Article  PubMed  Google Scholar 

  • Wang Y, Tien LT, Lapchak PA, Hoffer BJ (1996) GDNF triggers fiber outgrowth of fetal ventral mesencephalic grafts from nigra to striatum in 6-OHDA-lesioned rats. Cell Tissue Res 286:225–233

    Article  CAS  PubMed  Google Scholar 

  • Washbourne P, McAllister AK (2002) Techniques for gene transfer into neurons. Curr Opin Neurobiol 12:566–573

    Article  CAS  PubMed  Google Scholar 

  • Wood TK, McDermott KW, Sullivan AM (2005) Differential effects of growth/differentiation factor 5 and glial cell line-derived neurotrophic factor on dopaminergic neurons and astroglia in cultures of embryonic rat midbrain. J Neurosci Res 80:759–766

    Article  CAS  PubMed  Google Scholar 

  • Yu L-Y, Arumade U (2008) Survival assay of transiently transfected dopaminergic neurons. J Neurosci Methods 169:8–15

    Article  CAS  PubMed  Google Scholar 

  • Zurn AD, Widmer HR, Aebischer P (2001) Sustained delivery of GDNF: towards a treatment for Parkinson’s disease. Brain Res Brain Res Rev 36:222–229

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by the Health Research Board of Ireland. The authors wish to thank Dr Jens Pohl and Dr Michael Hanke of Biopharm GmbH, Germany, for the generous gifts of pSGDF5 plasmid and aMP5 antibody. We also wish to acknowledge Ms Bereniece Riedewald for her assistance with the preparation of the figures and Dr Gerard O’Keeffe for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aideen M. Sullivan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

O’Sullivan, D.B., Harrison, P.T. & Sullivan, A.M. Effects of GDF5 overexpression on embryonic rat dopaminergic neurones in vitro and in vivo. J Neural Transm 117, 559–572 (2010). https://doi.org/10.1007/s00702-010-0392-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-010-0392-9

Keywords

Navigation