Skip to main content

Advertisement

Log in

Attenuation of cerebral vasospasm and secondary injury by testosterone following experimental subarachnoid hemorrhage in rabbit

  • Experimental Research - Vascular
  • Published:
Acta Neurochirurgica Aims and scope Submit manuscript

Abstract

Background

The vasodilatator effects of testosterone have been widely studied and demonstrated. Based on previous studies of these vasodilatatory activities, we hypothesized that testosterone might have potential effects on subarachnoid hemorrhage-induced cerebral vasospasm.

Methods

Thirty-two adult male New Zealand white rabbits were randomly divided into four groups of eight rabbits in each group: group 1 (control); group 2 (subarachnoid hemorrhage); group 3 (subarachnoid hemorrhage + vehicle); and group 4 (subarachnoid hemorrhage + testosterone). Testosterone (15 mg/kg, intraperitoneally) was administered 5 min after the intracisternal blood injection and continued for 72 h once per day in the same dose for group 4. Animals were killed 72 h after subarachnoid hemorrhage. Basilar artery cross-sectional areas, arterial wall thicknesses, and hippocampal degeneration scores were evaluated in all groups.

Results

Intraperitoneal administration of testosterone was found to attenuate cerebral vasospasm and provide neuroprotection after subarachnoid hemorrhage in rabbits. Testosterone treatment was determined to be effective at increasing the luminal area and reducing the wall thickness of the basilar artery.

Conclusions

Our findings show that testosterone has some preventive effects on SAH-induced vasospasm and secondary neuronal injury in rabbits. We propose that the vasodilatatory activity of testosterone is due to its effects on inhibiting calcium channels, activating potassium channels, augmenting nitric oxide synthesis, and inhibiting oxidant stress and inflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Dorsch NW (1995) Cerebral arterial spasm-a clinical review. Br J Neurosurg 9:403–412

    Article  PubMed  CAS  Google Scholar 

  2. Kolias AG, Sen J, Belli A (2009) Pathogenesis of cerebral vasospasm following aneurysmal subarachnoid hemorrhage: putative mechanisms and novel approaches. J Neurosci Res 87:1–11

    Article  PubMed  CAS  Google Scholar 

  3. Dusick JR, Gonzalez NR (2013) Management of arterial vasospasm following aneurysmal subarachnoid hemorrhage. Semin Neurol 33:488–497

    Article  PubMed  Google Scholar 

  4. Koide M, Nystoriak MA, Brayden JE, Wellman GC (2011) Impact of subarachnoid hemorrhage on local and global calcium signaling in cerebral artery myocytes. Acta Neurochir Suppl 110:145–150

    PubMed  PubMed Central  Google Scholar 

  5. Tani E, Matsumoto T (2004) Continuous elevation of intracellular Ca2+ is essential for the development of cerebral vasospasm. Curr Vasc Pharmacol 2:13–21

    Article  PubMed  CAS  Google Scholar 

  6. Białek M, Zaremba P, Borowicz KK, Czuczwar SJ (2004) Neuroprotective role of testosterone in the nervous system. Pol J Pharmacol 56:509–518

    PubMed  Google Scholar 

  7. Chou TM, Sudhir K, Hutchison SJ, Ko E, Amidon TM, Collins P, Chatterjee K (1996) Testosterone induces dilation of canine coronary conductance and resistance arteries in vivo. Circulation 94:2614–2619

    Article  PubMed  CAS  Google Scholar 

  8. Deenadayalu VP, White RE, Stallone JN, Gao X, Garcia AJ (2001) Testosterone relaxes coronary arteries by opening the large-conductance, calcium-activated potassium channel. Am J Physiol Heart Circ Physiol 281:H1720–H1727

    PubMed  CAS  Google Scholar 

  9. English KM, Jones RD, Jones TH, Morice AH, Channer KS (2002) Testosterone acts as a coronary vasodilatator by a calcium antagonistic action. J Endocrinol Invest 25:455–458

    Article  PubMed  CAS  Google Scholar 

  10. Yue P, Chatterjee K, Beale C, Poole-Wilson PA, Collins P (1995) Testosterone relaxes rabbit coronary arteries and aorta. Circulation 91:1154–1160

    Article  PubMed  CAS  Google Scholar 

  11. Ding AQ, Stallone JN (2001) Testosterone-induced relaxation of rat aorta is androgen structure specific and involves K + channel activation. J Appl Physiol 91:2742–2750

    PubMed  CAS  Google Scholar 

  12. Honda H, Unemoto T, Kogo H (1999) Different mechanisms for testosterone-induced relaxation of aorta between normotensive and spontaneously hypertensive rats. Hypertension 34:1232–1236

    Article  PubMed  CAS  Google Scholar 

  13. Tep-areenan P, Kendall DA, Randall MD (2002) Testosterone-induced vasorelaxation in the rat mesenteric arterial bed is mediated predominantly via potassium channels. Br J Pharmacol 135:735–740

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Jones RD, English KM, Pugh PJ, Morice AH, Jones TH, Channer KS (2002) Pulmonary vasodilatatory action of testosterone: evidence of a calcium antagonistic action. J Cardiovasc Pharmacol 39:814–823

    Article  PubMed  CAS  Google Scholar 

  15. Jones RD, Pugh PJ, Jones TH, Channer KS (2003) The vasodilatatory action of testosterone: a potassium-channel opening or a calcium antagonistic action? Br J Pharmacol 138:733–744

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Seyrek M, Yildiz O, Ulusoy HB, Yildirim V (2007) Testosterone relaxes isolated human radial artery by potassium channel opening action. J Pharmacol Sci 103:309–316

    Article  PubMed  CAS  Google Scholar 

  17. Ramírez-Rosas MB, Cobos-Puc LE, Muñoz-Islas E, González-Hernández A, Sánchez-López A, Villalón CM, Maassenvandenbrink A, Centurión D (2011) Pharmacological evidence that Ca2+ channels and, to a lesser extent, K + channels mediate the relaxation of testosterone in the canine basilar artery. Steroids 76:409–415

    Article  PubMed  Google Scholar 

  18. Lu Y, Fu Y, Ge Y, Juncos LA, Reckelhoff JF, Liu R (2012) The vasodilatatory effect of testosterone on renal afferent arterioles. Gend Med 9:103–111

    Article  PubMed  PubMed Central  Google Scholar 

  19. Perusquía M, Stallone JN (2010) Do androgens play a beneficial role in the regulation of vascular tone? Nongenomic vascular effects of testosterone metabolites. Am J Physiol Heart Circ Physiol 298:H1301–H1307

    Article  PubMed  PubMed Central  Google Scholar 

  20. Chen Z, Xi G, Mao Y, Keep RF, Hua Y (2011) Effects of progesterone and testosterone on ICH-induced brain injury in rats. Acta Neurochir Suppl 111:289–293

    Article  PubMed  Google Scholar 

  21. Oloyo AK, Sofola OA, Anigbogu CN, Nair RR, Vijayakumar HS, Fernandez AC (2013) Testosterone reduces vascular relaxation by altering cyclic adenosine monophosphate pathway and potassium channel activation in male Sprague Dawley rats fed a high-salt diet. Ther Adv Cardiovasc Dis 7:75–85

    Article  PubMed  CAS  Google Scholar 

  22. Kertmen H, Gürer B, Yilmaz ER, Arikok AT, Kanat MA, Ergüder BI, Sekerci Z (2014) The comparative effects of recombinant human erythropoietin and darbepoetin-alpha on cerebral vasospasm following experimental subarachnoid hemorrhage in the rabbit. Acta Neurochir (Wien) 156:951–962

    Article  Google Scholar 

  23. Bederson JB, Connolly ES Jr, Batjer HH, Dacey RG, Dion JE, Diringer MN, Duldner JE Jr, Harbaugh RE, Patel AB, Rosenwasser RH (2009) Guidelines for the management of aneurysmal subarachnoid hemorrhage: a statement for healthcare professionals from a special writing group of the Stroke Council, American Heart Association. Stroke 40:994–1025

    Article  PubMed  Google Scholar 

  24. Kertmen H, Gürer B, Yilmaz ER, Arikok AT, Demirci A, Gökyaprak SM, Sekerci Z (2012) The effect of thiocolchicoside on cerebral vasospasm following experimental subarachnoid hemorrhage in the rabbit. Acta Neurochir (Wien) 154:1431–1436

    Article  Google Scholar 

  25. Iqbal MJ, Dalton M, Sawers RS (1983) Binding of testosterone and oestradiol to sex hormone binding globulin, human serum albumin and other plasma proteins: evidence for non-specific binding of oestradiol to sex hormone binding globulin. Clin Sci (Lond) 64:307–314

    CAS  Google Scholar 

  26. Ong PJ, Patrizi G, Chong WC, Webb CM, Hayward CS, Collins P (2000) Testosterone enhances flow-mediated brachial artery reactivity in men with coronary artery disease. Am J Cardiol 85:269–272

    Article  PubMed  CAS  Google Scholar 

  27. Kang SM, Jang Y, Ji K, Chung N, Cho SY, Chae JS, Lee JH (2002) Effect of oral administration of testosterone on brachial arterial vasoreactivity in men with coronary artery disease. Am J Cardiol 89:862–864

    Article  PubMed  CAS  Google Scholar 

  28. Clapham DE (1995) Calcium signaling. Cell 80:259–268

    Article  PubMed  CAS  Google Scholar 

  29. Nelson MT, Patlak JB, Worley JF, Standen NB (1990) Calcium channels, potassium channels, and voltage dependence of arterial smooth muscle tone. Am J Physiol 259:C3–C18

    PubMed  CAS  Google Scholar 

  30. Hai CM, Murphy RA (1989) Ca2+, crossbridge phosphorylation, and contraction. Annu Rev Physiol 51:285–298

    Article  PubMed  CAS  Google Scholar 

  31. Knot HJ, Nelson MT (1998) Regulation of arterial diameter and wall [Ca2+] in cerebral arteries of rat by membrane potential and intravascular pressure. J Physiol 508:199–209

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  32. Ohkuma H, Ogane K, Tanaka M, Suzuki S (2001) Assessment of cerebral microcirculatory changes during cerebral vasospasm by analyzing cerebral circulation time on DSA images. Acta Neurochir Suppl 77:127–130

    PubMed  CAS  Google Scholar 

  33. Takeuchi H, Handa Y, Kobayashi H, Kawano H, Hayashi M (1991) Impairment of cerebral autoregulation during the development of chronic cerebral vasospasm after subarachnoid hemorrhage in primates. Neurosurgery 28:41–48

    Article  PubMed  CAS  Google Scholar 

  34. Alvarez E, Cairrão E, Morgado M, Morais C, Verde I (2010) Testosterone and cholesterol vasodilation of rat aorta involves L-type calcium channel inhibition. Adv Pharmacol Sci 2010:534184

    PubMed  CAS  PubMed Central  Google Scholar 

  35. Crews JK, Khalil RA (1999) Antagonistic effects of 17 beta-estradiol, progesterone, and testosterone on Ca2+ entry mechanisms of coronary vasoconstriction. Arterioscler Thromb Vasc Biol 19:1034–1040

    Article  PubMed  CAS  Google Scholar 

  36. Hall J, Jones RD, Jones TH, Channer KS, Peers C (2006) Selective inhibition of L-type Ca2+ channels in A7r5 cells by physiological levels of testosterone. Endocrinology 147:2675–2680

    Article  PubMed  CAS  Google Scholar 

  37. Murphy JG, Khalil RA (1999) Decreased [Ca(2+)](i) during inhibition of coronary smooth muscle contraction by 17beta-estradiol, progesterone, and testosterone. J Pharmacol Exp Ther 291:44–52

    PubMed  CAS  Google Scholar 

  38. Perusquía M, Villalón CM (1999) Possible role of Ca2+ channels in the vasodilating effect of 5beta-dihydrotestosterone in rat aorta. Eur J Pharmacol 371:169–178

    Article  PubMed  Google Scholar 

  39. Scragg JL, Jones RD, Channer KS, Jones TH, Peers C (2004) Testosterone is a potent inhibitor of L-type Ca(2+) channels. Biochem Biophys Res Commun 318:503–506

    Article  PubMed  CAS  Google Scholar 

  40. Scragg JL, Dallas ML, Peers C (2007) Molecular requirements for L-type Ca2+ channel blockade by testosterone. Cell Calcium 42:11–15

    Article  PubMed  CAS  Google Scholar 

  41. Montaño LM, Calixto E, Figueroa A, Flores-Soto E, Carbajal V, Perusquía M (2008) Relaxation of androgens on rat thoracic aorta: testosterone concentration-dependent agonist/antagonist L-type Ca2+ channel activity, and 5beta-dihydrotestosterone restricted to L-type Ca2+ channel blockade. Endocrinology 149:2517–2526

    Article  PubMed  Google Scholar 

  42. Jones RD, English KM, Jones TH, Channer KS (2004) Testosterone-induced coronary vasodilatation occurs via a non-genomic mechanism: evidence of a direct calcium antagonism action. Clin Sci (Lond) 107:149–158

    Article  CAS  Google Scholar 

  43. Harder DR, Dernbach P, Waters A (1987) Possible cellular mechanism for cerebral vasospasm after experimental subarachnoid hemorrhage in the dog. J Clin Invest 80:875–880

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  44. Jahromi BS, Aihara Y, Ai J, Zhang ZD, Nikitina E, Macdonald RL (2008) Voltage-gated K + channel dysfunction in myocytes from a dog model of subarachnoid hemorrhage. J Cereb Blood Flow Metab 28:797–811

    Article  PubMed  CAS  Google Scholar 

  45. Koide M, Penar PL, Tranmer BI, Wellman GC (2007) Heparin-binding EGF-like growth factor mediates oxyhemoglobin-induced suppression of voltage-dependent potassium channels in rabbit cerebral artery myocytes. Am J Physiol Heart Circ Physiol 293:H1750–H1759

    Article  PubMed  CAS  Google Scholar 

  46. Cairrão E, Alvarez E, Santos-Silva AJ, Verde I (2008) Potassium channels are involved in testosterone-induced vasorelaxation of human umbilical artery. Naunyn Schmiedeberg’s Arch Pharmacol 376:375–383

    Article  Google Scholar 

  47. Yildiz O, Seyrek M, Gul H, Un I, Yildirim V, Ozal E, Uzun M, Bolu E (2005) Testosterone relaxes human internal mammary artery in vitro. J Cardiovasc Pharmacol 45:580–585

    Article  PubMed  CAS  Google Scholar 

  48. Pluta RM, Thompson BG, Dawson TM, Snyder SH, Boock RJ, Oldfield EH (1996) Loss of nitric oxide synthase immunoreactivity in cerebral vasospasm. J Neurosurg 84:648–654

    Article  PubMed  CAS  Google Scholar 

  49. Albayrak Y, Halici Z, Odabasoglu F, Unal D, Keles ON, Malkoc I, Oral A, Yayla M, Aydin O, Unal B (2011) The effects of testosterone on intestinal ischemia/reperfusion in rats. J Invest Surg 24:283–291

    Article  PubMed  Google Scholar 

  50. Asirvatham AJ, Schmidt M, Gao B, Chaudhary J (2006) Androgens regulate the immune/inflammatory response and cell survival pathways in rat ventral prostate epithelial cells. Endocrinology 147:257–271

    Article  PubMed  CAS  Google Scholar 

  51. Vignozzi L, Cellai I, Santi R, Lombardelli L, Morelli A, Comeglio P, Filippi S, Logiodice F, Carini M, Nesi G, Gacci M, Piccinni MP, Adorini L, Maggi M (2012) Antiinflammatory effect of androgen receptor activation in human benign prostatic hyperplasia cells. J Endocrinol 214:31–43

    Article  PubMed  CAS  Google Scholar 

  52. Chisu V, Manca P, Lepore G, Gadau S, Zedda M, Farina V (2006) Testosterone induces neuroprotection from oxidative stress. Effects on catalase activity and 3-nitro-L-tyrosine incorporation into alpha-tubulin in a mouse neuroblastoma cell line. Arch Ital Biol 144:63–73

    PubMed  CAS  Google Scholar 

  53. Fargo KN, Foecking EM, Jones KJ, Sengelaub DR (2009) Neuroprotective actions of androgens on motoneurons. Front Neuroendocrinol 30:130–141

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  54. Tirassa P, Thiblin I, Agren G, Vigneti E, Aloe L, Stenfors C (1997) High-dose anabolic androgenic steroids modulate concentrations of nerve growth factor and expression of its low affinity receptor (p75-NGFr) in male rat brain. J Neurosci Res 47:198–207

    Article  PubMed  CAS  Google Scholar 

  55. Kujawa KA, Emeric E, Jones KJ (1991) Testosterone differentially regulates the regenerative properties of injured hamster facial motoneurons. J Neurosci 11:3898–3906

    PubMed  CAS  Google Scholar 

  56. Ahlbom E, Prins GS, Ceccatelli S (2001) Testosterone protects cerebellar granule cells from oxidative stress-induced cell death through a receptor mediated mechanism. Brain Res 892:255–262

    Article  PubMed  CAS  Google Scholar 

  57. Pike CJ (2001) Testosterone attenuates beta-amyloid toxicity in cultured hippocampal neurons. Brain Res 919:160–165

    Article  PubMed  CAS  Google Scholar 

  58. Sowers MF, Beebe JL, McConnell D, Randolph J, Jannausch M (2001) Testosterone concentrations in women aged 25–50 years: associations with lifestyle, body composition, and ovarian status. Am J Epidemiol 153:256–264

    Article  PubMed  CAS  Google Scholar 

  59. Travison TG, Araujo AB, O’Donnell AB, Kupelian V, McKinlay JB (2007) A population-level decline in serum testosterone levels in American men. J Clin Endocrinol Metab 92:196–202

    Article  PubMed  CAS  Google Scholar 

Download references

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bora Gürer.

Additional information

Comment

This remains an observational rather than mechanistic study, but is well conceived and conducted. It provides hypothesis-generating data, and as such a contribution to the literature.

Michael Tymianski

Toronto, Canada

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gürer, B., Turkoglu, E., Kertmen, H. et al. Attenuation of cerebral vasospasm and secondary injury by testosterone following experimental subarachnoid hemorrhage in rabbit. Acta Neurochir 156, 2111–2120 (2014). https://doi.org/10.1007/s00701-014-2211-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00701-014-2211-9

Keywords

Navigation