Skip to main content
Log in

Adaptive-Multilevel BDDC and its parallel implementation

  • Published:
Computing Aims and scope Submit manuscript

Abstract

We combine the adaptive and multilevel approaches to the BDDC and formulate a method which allows an adaptive selection of constraints on each decomposition level. We also present a strategy for the solution of local eigenvalue problems in the adaptive algorithm using the LOBPCG method with a preconditioner based on standard components of the BDDC. The effectiveness of the method is illustrated on several engineering problems. It appears that the Adaptive-Multilevel BDDC algorithm is able to effectively detect troublesome parts on each decomposition level and improve convergence of the method. The developed open-source parallel implementation shows a good scalability as well as applicability to very large problems and core counts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. http://www.math.cas.cz/~sistek/software/bddcml.html.

  2. http://code.google.com/p/blopex.

References

  1. Amestoy PR, Duff IS, L’Excellent JY (2000) Multifrontal parallel distributed symmetric and unsymmetric solvers. Comput Methods Appl Mech Eng 184:501–520

    Article  MATH  Google Scholar 

  2. Blaheta R, Jakl O, Starý J, Krečmer K (2009) The Schwarz domain decomposition method for analysis of geocomposites. In: Topping B, Neves LC, Barros R (eds) Proceedings of the twelfth international conference on civil, structural and environmental engineering computing. Civil-Comp Press, Stirlingshire

    Google Scholar 

  3. Brenner SC, Sung LY (2007) BDDC and FETI-DP without matrices or vectors. Comput Methods Appl Mech Eng 196(8):1429–1435

    Article  MathSciNet  MATH  Google Scholar 

  4. Brož J, Kruis J, (2009) An algorithm for corner nodes selection in the FETI-DP method. In: Enginnering mechanics 2009—CDROM [CD-ROM]. Institute of Theoretical and Applied Mechanics AS CR, Prague, pp 129–140

  5. Cros JM (2003) A preconditioner for the Schur complement domain decomposition method. In: Herrera I, Keyes DE, Widlund OB (eds) Domain decomposition methods in science and engineering. In: 14th international conference on domain decomposition methods, Cocoyoc, Mexico, January 6–12, 2002. National Autonomous University of Mexico (UNAM), México (2003) , pp 373–380

  6. Demmel JW (1997) Applied numerical linear algebra. Society for Industrial and Applied Mathematics (SIAM), Philadelphia

  7. Dohrmann CR (2003) A preconditioner for substructuring based on constrained energy minimization. SIAM J Sci Comput 25(1):246–258

    Article  MathSciNet  MATH  Google Scholar 

  8. Farhat C, Lesoinne M, Pierson K (2000) A scalable dual-primal domain decomposition method. Numer Linear Algebra Appl 7:687–714

    Article  MathSciNet  MATH  Google Scholar 

  9. Fragakis Y, Papadrakakis M (2003) The mosaic of high performance domain decomposition methods for structural mechanics: formulation, interrelation and numerical efficiency of primal and dual methods. Comput Methods Appl Mech Eng 192:3799–3830

    Article  MATH  Google Scholar 

  10. Ipsen ICF, Meyer CD (1995) The angle between complementary subspaces. Am Math Monthly 102(10):904–911

    Article  MathSciNet  MATH  Google Scholar 

  11. Karypis G, Kumar V (1998) METIS: a software package for partitioning unstructured graphs, partitioning meshes, and computing fill-reducing orderings of sparse matrices, version 4.0. Technical report, Department of Computer Science, University of Minnesota. http://glaros.dtc.umn.edu/gkhome/views/metis

  12. Kim HH, Tu X (2009) A three-level BDDC algorithm for mortar discretizations. SIAM J Numer Anal 47(2):1576–1600. doi:10.1137/07069081X

    Article  MathSciNet  MATH  Google Scholar 

  13. Klawonn A, Rheinbach O, Widlund OB (2008) An analysis of a FETI-DP algorithm on irregular subdomains in the plane. SIAM J Numer Anal 46(5):2484–2504. doi:10.1137/070688675

    Article  MathSciNet  MATH  Google Scholar 

  14. Klawonn A, Widlund OB (2006) Dual-primal FETI methods for linear elasticity. Commun Pure Appl Math 59(11):1523–1572

    Article  MathSciNet  MATH  Google Scholar 

  15. Klawonn A, Widlund OB, Dryja M (2002) Dual-primal FETI methods for three-dimensional elliptic problems with heterogeneous coefficients. SIAM J Numer Anal 40(1):159–179

    Article  MathSciNet  MATH  Google Scholar 

  16. Knyazev AV (2001) Toward the optimal preconditioned eigensolver: locally optimal block preconditioned conjugate gradient method. Copper Mountain conference, 2000. SIAM J Sci Comput 23(2):517–541

    Google Scholar 

  17. Kruis J (2006) Domain decomposition methods for distributed computing. Saxe-Coburg Publications, Kippen

    Google Scholar 

  18. Lesoinne M (2003) A FETI-DP corner selection algorithm for three-dimensional problems. In: Herrera I, Keyes DE, Widlund OB (eds) Domain decomposition methods in science and engineering. In: 14th international conference on domain decomposition methods, Cocoyoc, Mexico, January 6–12, 2002. National Autonomous University of Mexico (UNAM), México, pp 217–223. http://www.ddm.org

  19. Li J, Widlund OB (2006) FETI-DP, BDDC, and block Cholesky methods. Int J Numer Methods Eng 66(2):250–271

    Article  MathSciNet  MATH  Google Scholar 

  20. Mandel J, Dohrmann CR (2003) Convergence of a balancing domain decomposition by constraints and energy minimization. Numer Linear Algebra Appl 10(7):639–659

    Article  MathSciNet  MATH  Google Scholar 

  21. Mandel J, Dohrmann CR, Tezaur R (2005) An algebraic theory for primal and dual substructuring methods by constraints. Appl Numer Math 54(2):167–193

    Article  MathSciNet  MATH  Google Scholar 

  22. Mandel J, Sousedík B (2006) Adaptive coarse space selection in the BDDC and the FETI-DP iterative substructuring methods: optimal face degrees of freedom. In: Widlund OB, Keyes DE (eds) Domain decomposition methods in science and engineering XVI. Lecture notes in computational science and engineering, vol 55. Springer, Berlin, pp 421–428

    Chapter  Google Scholar 

  23. Mandel J, Sousedík B (2007) Adaptive selection of face coarse degrees of freedom in the BDDC and the FETI-DP iterative substructuring methods. Comput Methods Appl Mech Eng 196(8):1389–1399

    Article  MATH  Google Scholar 

  24. Mandel J, Sousedík B (2007) BDDC and FETI-DP under minimalist assumptions. Computing 81:269–280

    Article  MathSciNet  MATH  Google Scholar 

  25. Mandel J, Sousedík B, Dohrmann CR (2007) On multilevel BDDC. Domain decomposition methods in science and engineering XVII. Lecture notes in computational science and engineering, vol 60, pp 287–294

  26. Mandel J, Sousedík B, Dohrmann CR (2008) Multispace and multilevel BDDC. Computing 83(2–3):55–85. doi:10.1007/s00607-008-0014-7

    Article  MathSciNet  MATH  Google Scholar 

  27. Mandel J, Sousedík B, Šístek J (2001) Adaptive BDDC in three dimensions. Math Comput Simul 82(10):1812–1831. doi:10.1016/j.matcom.2011.03.014

    Article  Google Scholar 

  28. Mandel J, Tezaur R (2001) On the convergence of a dual-primal substructuring method. Numer Math 88:543–558

    Article  MathSciNet  MATH  Google Scholar 

  29. Pechstein C, Scheichl R (2008) Analysis of FETI methods for multiscale PDEs. Numer Math 111(2):293–333

    Article  MathSciNet  MATH  Google Scholar 

  30. Pechstein C, Scheichl R (2011) Analysis of FETI methods for multiscale PDEs—Part II: interface variations. Numer Math 118(3):485–529

    Article  MathSciNet  MATH  Google Scholar 

  31. Šístek J, Mandel J, Sousedík B (2012) Some practical aspects of parallel adaptive BDDC method. In: Brandts J, Chleboun J, Korotov S, Segeth K, Šístek J, Vejchodský T (eds) Proceedings of Applications of Mathematics 2012. Institute of Mathematics AS CR, pp 253–266

  32. Šístek J, Mandel J, Sousedík B, Burda P (2013) Parallel implementation of Multilevel BDDC. In: Proceedings of ENUMATH 2011. Springer, Berlin (to appear)

  33. Šístek J, Čertíková M, Burda P, Novotný J (2012) Face-based selection of corners in 3D substructuring. Math Comput Simul 82(10):1799–1811. doi:10.1016/j.matcom.2011.06.007

    Article  Google Scholar 

  34. Smith BF, Bjørstad PE, Gropp WD (1996) Domain decomposition: parallel multilevel methods for elliptic partial differential equations. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  35. Sousedík B (2008) Comparison of some domain decomposition methods. Ph.D. thesis, Czech Technical University in Prague, Faculty of Civil Engineering, Department of Mathematics. http://mat.fsv.cvut.cz/doktorandi/files/BSthesisCZ.pdf. Retrieved December 2011

  36. Sousedík B (2010) Adaptive-Multilevel BDDC. Ph.D. thesis, University of Colorado Denver, Department of Mathematical and Statistical Sciences

  37. Sousedík B (2011) Nested BDDC for a saddle-point problem. submitted to Numerische Mathematik. http://arxiv.org/abs/1109.0580

  38. Sousedík B, Mandel J (2008) On the equivalence of primal and dual substructuring preconditioners. Electron Trans Numer Anal 31:384–402. http://etna.mcs.kent.edu/vol.31.2008/pp384-402.dir/pp384-402.html. Retrieved December 2011

    Google Scholar 

  39. Sousedík B, Mandel J (2011) On Adaptive-Multilevel BDDC. In: Huang Y, Kornhuber R, Widlund O, Xu J (eds) Domain decomposition methods in science and engineering XIX. Lecture notes in computational science and engineering vol 78, Part 1. Springer, Berlin, pp 39–50. doi:10.1007/978-3-642-11304-8_4

  40. Toselli A, Widlund OB (2005) Domain decomposition methods—algorithms and theory. In: Springer series in computational mathematics, vol 34. Springer, Berlin

  41. Tu X (2007) Three-level BDDC in three dimensions. SIAM J Sci Comput 29(4):1759–1780. doi:10.1137/050629902

    Article  MathSciNet  MATH  Google Scholar 

  42. Tu X (2007) Three-level BDDC in two dimensions. Int J Numer Methods Eng 69(1):33–59. doi:10.1002/nme.1753

    Article  MATH  Google Scholar 

  43. Tu X (2011) A three-level BDDC algorithm for a saddle point problem. Numer Math 119(1):189–217. doi:10.1007/s00211-011-0375-2

    Article  MathSciNet  MATH  Google Scholar 

  44. Widlund OB (2009) Accomodating irregular subdomains in domain decomposition theory. In: Bercovier M, Gander M, Kornhuber R, Widlund O (eds) Domain decomposition methods in science and engineering XVIII. Proceedings of 18th international conference on domain decomposition. Jerusalem, Israel, January 2008. Lecture notes in computational science and engineering, vol 70. Springer, Berlin

Download references

Acknowledgments

We would like to thank to Jaroslav Novotný, Jan Leština, Radim Blaheta, and Jiří Starý for providing data of real engineering problems. This work was supported in part by National Science Foundation under grant DMS-1216481, by Czech Science Foundation under grant GA ČR 106/08/0403, and by the Academy of Sciences of the Czech Republic through RVO:67985840. B. Sousedík acknowledges support from the DOE/ASCR and the NSF PetaApps award number 0904754. J. Šístek acknowledges the computing time on Hector supercomputer provided by the PRACE-DECI initiative. A part of the work was done at the University of Colorado Denver when B. Sousedík was a graduate student and during visits of J. Šístek, partly supported by the Czech-American Cooperation program of the Ministry of Education, Youth and Sports of the Czech Republic under research project LH11004.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jakub Šístek.

Additional information

Dedicated to Professor Ivo Marek on the occasion of his 80th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sousedík, B., Šístek, J. & Mandel, J. Adaptive-Multilevel BDDC and its parallel implementation. Computing 95, 1087–1119 (2013). https://doi.org/10.1007/s00607-013-0293-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00607-013-0293-5

Keywords

Mathematics Subject Classification (2000)

Navigation