Skip to main content
Log in

Velocity–pressure coupling on GPUs

  • Published:
Computing Aims and scope Submit manuscript

Abstract

We explore the possibilities to accelerate simulations in computational fluid dynamics by additional graphics processing units (GPUs). By examining some examples of stationary incompressible flows from the industrial practice we demonstrate that the potential speedup obtained by deploying GPU accelerated linear solvers alone is limited if standard segregated algorithms are used. However, recently presented velocity–pressure coupling algorithms are an attractive alternative to these segregated algorithms. We present an efficient AMG solver for the coupled linear system of mixed elliptic–hyperbolic character and show that the GPU-accelerated version of this linear solver accelerates the velocity–pressure coupling scheme by almost 50 % compared to a competitive CPU implementation. Compared to standard segregated methods, the computing time of the whole simulation is reduced by up to 75 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Amestoy PR, Guermouche A, L’Excellent JY, Pralet S (2006) Hybrid scheduling for the parallel solution of linear systems. Parallel Comput 32:136–156

    Article  MathSciNet  Google Scholar 

  2. Cevahir A, Nukada A, Matsuoka S (2009) Fast conjugate gradients with multiple GPUs. In: Allen J, Nabrzyski E, Seidel G, van Albada J, Dongarra P Sloot (eds) ICCS 2009, vol 5544. Springer, Berlin, pp 894–903

    Google Scholar 

  3. Chen Z, Przekwas A (2010) A coupled pressure-based computational method for incompressible/compressible flows. J Comput Phys 229:9150–9165

    Article  MathSciNet  MATH  Google Scholar 

  4. Darwish M, Saad T, Hamdan Z (2008) Parallelization of an additive multigrid solver. Numer Heat Transf 54(2):157–184

    Article  Google Scholar 

  5. Darwish M, Sraj I, Moukalled F (2009) A coupled finite volume solver for the solution of incompressible flows on unstructured grids. J Comput Phys 228:180–201

    Article  MathSciNet  MATH  Google Scholar 

  6. Emans M (2010) Aggregation AMG for distributed systems suffering from large message sizes. In: D’Ambra P, Guarracino M, Tallia D (eds) EuroPar 2010, Part II, Lecture Notes in Computer Science, vol 6272. Springer, Berlin, pp 89–100

    Google Scholar 

  7. Emans M (2010) AMG for linear systems in engine flow simulations. In: Wyrzykowski R, Dongarra J, Karczewski K, Wasniewski J (eds) PPAM 2009, Part II, Lecture Notes in Computer Science, vol 6068. Springer, Berlin, pp 350–359

  8. Emans M (2010) Benchmarking aggregation AMG for linear systems in CFD simulations of compressible internal flows. Electr Transact Numer Anal 37:351–366

    MathSciNet  MATH  Google Scholar 

  9. Emans M (2010) Efficient parallel AMG methods for approximate solutions of linear systems in CFD applications. SIAM J Sci Comput 32:2235–2254

    Article  MathSciNet  MATH  Google Scholar 

  10. Emans M (2010) Performance of parallel AMG-preconditioners in CFD-codes for weakly compressible flows. Parallel Comput 36:326–338

    Article  MathSciNet  MATH  Google Scholar 

  11. Emans M (2011) Coarse-grid treatment in parallel AMG for coupled systems in CFD applications. J Comput Sci 2:365–376

    Google Scholar 

  12. Emans M (2012) Combining smoother and residual calculation in v-cycle AMG for symmetric problems. In: Wyrzykowski R, Dongarra J, Karczewski K, Wasniewski J (eds) PAMM 2011, Part I, Lecture Notes in Computer Science, vol 7203. Springer, Berlin, pp 651–660

    Google Scholar 

  13. Emans M (2012) Krylov-accelerated algebraic multigrid for semi-definite and nonsymmetric systems in computational fluid dynamics. Numer Linear Algebra Appl 19:210–231

    Article  MathSciNet  MATH  Google Scholar 

  14. Falgout R, Jones J, Yang U (2006) Conceptual interfaces in hypre. Future Gener Comput Syst 22: 239–251

    Google Scholar 

  15. Ferziger J, Perić M (1996) Computational methods for fluid dynamics. Springer, Berlin

    Book  MATH  Google Scholar 

  16. Göddeke D, Strzodka R, Mohd-Yusof J, McCormick P, Wobker H, Becker C, Turek S (2008) Using GPUs to improve multigrid solver performance on a cluster. Int J Comput Sci Eng 4(1):36–55

    Google Scholar 

  17. Goodnight N, Woolley C, Lewin G, Luebke D, Humphreys GA (2003) Multigrid solver for boundary value problems using programmable graphics hardware. In: Doggett M, Heidrich W, Mark W, Schilling A (eds) Eurographics/SIGGRAPH Workshop on Graphics Hardware 2003, pp 102–135

  18. Haase G, Liebmann M, Douglas C, Plank G (2010) A parallel algebraic multigrid solver on graphical processing unit. In: Zhang W, Chen Z, Douglas C, Tong W (eds) High performance computing and applications 2010, Lecture Notes in Computer Science, vol 5938. Springer, Berlin, pp 38–47

    Google Scholar 

  19. Jones W, Launder B (1972) The prediction of laminarization with a two-equation model of turbulence. Int J Heat Mass Transf 15:301–314

    Article  Google Scholar 

  20. Karypis G, Kumar V (1998) A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM J Sci Comput 20:359–392

    Article  MathSciNet  Google Scholar 

  21. Konstantinidis E, Cotronis Y (2012) Accelerating the red/black SOR method using GPUs with CUDA. In: Wyrzykowski R, Dongarra J, Karczewski K, Wasniewski J (eds) PPAM 2011, Part I, Lecture Notes in Computer Science, vol 7203. Springer, Berlin, pp 559–598

    Google Scholar 

  22. Krüger J, Westermann R (2003) Linear algebra operators for GPU implementation of numerical algorithms. ACM Trans Graphics 22(3):908–916

    Article  Google Scholar 

  23. Liebmann M (2009) Efficient PDF solvers on modern hardware with applications in medical and technical sciences. Ph.D. thesis, University of Graz

  24. Notay Y (2010) An aggregation-based algebraic multigrid method. Electr Transact Numer Anal 37:123–146

    MathSciNet  MATH  Google Scholar 

  25. Patankar S, Spalding D (1972) A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows. Int J Heat Mass Transf 15:1787–1806

    Article  MATH  Google Scholar 

  26. Rhie C, Chow W (1983) Numerical study of the turbulent flow past an airfoil with trailing edge separation. AIAA J 21(11):1525–1532

    Article  MATH  Google Scholar 

  27. Saad Y (1993) A flexible inner–outer preconditioned GMRES algorithm. SIAM J Sci Comput 14: 461–469

    Google Scholar 

  28. Vaněk P, Mandel J, Brezina M (1996) Algebraic multigrid by smoothed aggregation for second and fourth order elliptic problems. Computing 56:179–196

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

Part of the contribution of Maximilian Emans was supported by the government of Upper Austria within the strategic program “Innovatives Oberösterreich 2010plus”. The research of Manfred Liebmann was supported by the Austrian Science Fund FWF project SFB F032 “Mathematical Optimization and Applications in Biomedical Sciences”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maximilian Emans.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Emans, M., Liebmann, M. Velocity–pressure coupling on GPUs. Computing 95 (Suppl 1), 123–143 (2013). https://doi.org/10.1007/s00607-012-0228-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00607-012-0228-6

Keywords

Mathematics Subject Classification (2000)

Navigation