Skip to main content
Log in

Maximal subgroups of finite groups avoiding the elements of a generating set

  • Published:
Monatshefte für Mathematik Aims and scope Submit manuscript

Abstract

We give an elementary proof of the following remark: if G is a finite group and \(\{g_1,\ldots ,g_d\}\) is a generating set of G of smallest cardinality, then there exists a maximal subgroup M of G such that \(M\cap \{g_1,\ldots ,g_d\}=\varnothing .\) This result leads us to investigate the freedom that one has in the choice of the maximal subgroup M of G. We obtain information in this direction in the case when G is soluble, describing for example the structure of G when there is a unique choice for M. When G is a primitive permutation group one can ask whether is it possible to choose in the role of M a point-stabilizer. We give a positive answer when G is a 3-generated primitive permutation group but we leave open the following question: does there exist a (soluble) primitive permutation group \(G=\langle g_1,\ldots ,g_d\rangle \) with \(d(G)=d >3\) and with \(\bigcap _{1\le i\le d}{{\mathrm{supp}}}(g_i)=\varnothing \)? We obtain a weaker result in this direction: if \(G=\langle g_1,\ldots ,g_d\rangle \) with \(d(G)=d\), then \({{\mathrm{supp}}}(g_i)\cap {{\mathrm{supp}}}(g_j) \ne \varnothing \) for all \(i, j\in \{1,\ldots ,d\}.\)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aschbacher, M., Guralnick, R.: Some applications of the first cohomology group. J. Algebra 90(2), 446–460 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ballester-Bolinches, A., Ezquerro, L.M.: Classes of finite groups, Mathematics and Its Applications (Springer), vol. 584. Springer, Dordrecht (2006)

    MATH  Google Scholar 

  3. Crestani, E., Lucchini, A.: \(d\)-Wise generation of prosolvable groups. J. Algebra 369, 59–69 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. Crestani, E., Lucchini, A.: The non-isolated vertices in the generating graph of a direct powers of simple groups. J. Algebraic Combin. 37, 249–263 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Dalla Volta, F., Lucchini, A.: Generation of almost simple groups. J. Algebra 178(1), 194–223 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  6. Volta Dalla, F., Lucchini, A.: Finite groups that need more generators than any proper quotient. J. Austral. Math. Soc. Ser. A 64(1), 82–91 (1998)

  7. Doerk, K., Hawkes, T.: Finite Soluble Groups, de Gruyter Expositions in Mathematics, vol. 4. Walter de Gruyter & Co., Berlin (1992)

    Book  MATH  Google Scholar 

  8. Gaschütz, W.: Zu einem von B. H. und H. Neumann gestellten Problem. Math. Nachr. 14, 249–252 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gaschütz, W.: Praefrattinigruppen. Arch. Mat. 13, 418–426 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  10. Giudici, M., Praeger, C.E., Spiga, P.: Finite primitive permutation groups and regular cycles of their elements. J. Algebra 421, 27–55 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Guralnick, R., Magaard, K.: On the minimal degree of a primitive permutation group. J. Algebra 207(1), 127–145 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  12. Holt, D.F., Roney-Dougal, C.M.: Minimal and random generation of permutation and matrix groups. J. Algebra 387, 195–214 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kleidman, P., Liebeck, M.: The Subgroup Structure of the Finite Classical Groups. London Mathematical Society Lecture Note Series 129. Cambridge University Press, Cambridge (1990)

  14. Liebeck, M., Praeger, C.E., Saxl, J.: On the O’Nan-Scott theorem for primitive permutation groups. Austral. Math. Soc. 44, 389–396 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  15. Liebeck, M., Saxl, J.: Minimal degrees of primitive permutation groups, with an application to monodromy groups of covers of Riemann surfaces. Proc. Lond. Math. Soc. (3) 63(2), 266–314 (1991)

  16. Lucchini, A., Menegazzo, F.: Generators for finite groups with a unique minimal normal subgroup. Rend. Sem. Mat. Univ. Padova 98, 173–191 (1997)

    MathSciNet  MATH  Google Scholar 

  17. McLaughlin, J.: Some subgroups of \({\rm {SL}}_n(\mathbb{F}_2)\). Illinois J. Math. 13, 108–115 (1969)

    MathSciNet  Google Scholar 

  18. Potter, W.: Nonsolvable groups with an automorphism inverting many elements. Arch. Math. (Basel) 50(4), 292–299 (1988)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Lucchini.

Additional information

Communicated by Adrian Constantin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lucchini, A., Spiga, P. Maximal subgroups of finite groups avoiding the elements of a generating set. Monatsh Math 185, 455–472 (2018). https://doi.org/10.1007/s00605-016-0985-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00605-016-0985-y

Keywords

Mathematics Subject Classification

Navigation