Skip to main content
Log in

Fractional parts of Dedekind sums in function fields

  • Published:
Monatshefte für Mathematik Aims and scope Submit manuscript

Abstract

In this paper, we determine the fractional part of a given Dedekind sum in a rational function field \(\mathbb {F}_q(T)\). Using this result, we prove two theorems. The first theorem states that any element of \(\mathbb {F}_q(T)\) is the fractional part of a certain Dedekind sum. In the second theorem, we introduce an analog of the Rademacher function and establish the composition law.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bayad, A., Hamahata, Y.: Higher dimensional Dedekind sums in function fields. Acta Arithmetica 152, 71–80 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  2. Dedekind, R.: Erläuterungen zu den Fragmenten xxviii. In: Collected Works of Bernhard Riemann, pp. 466–478. Dover Publ., New York (1953)

  3. Carlitz, L.: On certain functions connected with polynomials in a Galois field. Duke Math. J. 1, 137–168 (1935)

    Article  MathSciNet  MATH  Google Scholar 

  4. Dieter, U.: Beziehungen zwischen Dedekindschen Summen. Abh. Math. Sem. Univ. Hamburg 21, 109–125 (1957)

  5. Freitag, E.: Siegelsche Modulfunktionen, Springer (1983)

  6. Girstmair, K.: A criterion for the equality of Dedekind sums mod \(\mathbb{Z}\). Int. J. Number Theory 10, 565–568 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Girstmair, K.: On the fractional parts of Dedekind sums. Int J. Num Theory 11, 29–38 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Goss, D.: Basic structures of function field arithmetic, Springer (1998)

  9. Hamahata, Y.: Denominators of Dedekind sums in function fields. Int J. Num Theory 9, 1423–1430 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hamahata, Y.: Continued fractions and Dedekind sums for function fields. In: Number Theory and Related Fields. In Memory of Alf van der Poorten, pp. 187–197, Springer (2013)

  11. Hamahata, Y.: Values of Dedekind sums for function fields. Functiones et Approximatio Commentarii Mathematici 52, 29–35 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hickerson, D.: Continued fractions and density results for Dedekind sums. J. Reine Angew. Math. 290, 113–116 (1977)

    MathSciNet  MATH  Google Scholar 

  13. Kirby, R., Melvin, P.: Dedekind sums, \(\mu \)-invariants and the signature cocycle. Math. Ann. 299, 231–267 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lang, S.: Introduction to modular forms, Springer (1976)

  15. Rademacher, H.: Zur Theorie der Dedekindschen Summen. Math. Z. 63, 445–463 (1956)

    Article  MathSciNet  Google Scholar 

  16. Rademacher, H., Grosswald, E.: Dedekind sums. The mathematical association of America, Washington, D.C. (1972)

  17. Rosen, M.: Number theory in function fields, Springer (2002)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshinori Hamahata.

Additional information

Communicated by J. Schoißengeier.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamahata, Y. Fractional parts of Dedekind sums in function fields. Monatsh Math 180, 549–562 (2016). https://doi.org/10.1007/s00605-015-0781-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00605-015-0781-0

Keywords

Mathematics Subject Classification

Navigation