Skip to main content
Log in

Counting degenerate polynomials of fixed degree and bounded height

  • Published:
Monatshefte für Mathematik Aims and scope Submit manuscript

Abstract

In this paper, we give sharp upper and lower bounds for the number of degenerate monic (and arbitrary, not necessarily monic) polynomials with integer coefficients of fixed degree \(n \ge 2\) and height bounded by \(H \ge 2\). The polynomial is called degenerate if it has two distinct roots whose quotient is a root of unity. In particular, our bounds imply that non-degenerate linear recurrence sequences can be generated randomly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barroero, F.: Counting algebraic integers of fixed degree and bounded height. Monatsh. Math. (2013). doi:10.1007/s00605-013-0599-6

  2. Barroero, F., Widmer, M.: Counting lattice points and o-minimal structures. Int. Math. Res. Notices (2013). doi:10.1093/imrn/rnt102

  3. Boyd, D.W.: Irreducible polynomials with many roots of maximal modulus. Acta Arith. 68, 85–88 (1994)

    MathSciNet  Google Scholar 

  4. Cauchy, A.L.: Exercises de mathématique, 4ème année. De Bure Frères, Paris (1829)

    Google Scholar 

  5. Chela, R.: Reducible polynomials. J. Lond. Math. Soc. 38, 183–188 (1963)

    Article  MathSciNet  Google Scholar 

  6. Chern, S., Vaaler, J.D.: The distribution of values of Mahler’s measure. J. Reine Angew. Math. 540, 1–47 (2001)

    Article  MathSciNet  Google Scholar 

  7. Cipu, M., Diouf, I., Mignotte, M.: Testing degenerate polynomials. Appl. Alg. Eng. Commun. Comp. 22, 289–300 (2011)

    Article  MathSciNet  Google Scholar 

  8. Dörge, K.: Abschätzung der Anzahl der reduziblen polynome. Math. Ann. 160, 59–63 (1965)

    Article  MathSciNet  Google Scholar 

  9. Drungilas, P., Dubickas, A.: On subfields of a field generated by two conjugate algebraic numbers. Proc. Edinb. Math. Soc. 47, 119–123 (2004)

    Article  MathSciNet  Google Scholar 

  10. Dubickas, A.: Polynomials irreducible by Eisenstein’s criterion. Appl. Alg. Eng. Commun. Comp. 14, 127–132 (2003)

    Article  MathSciNet  Google Scholar 

  11. Dubickas, A.: Roots of unity as quotients of two roots of a polynomial. J. Aust. Math. Soc. 92, 137–144 (2012)

    Article  MathSciNet  Google Scholar 

  12. Dubickas, A.: On the number of reducible polynomials of bounded naive height. Manuscr. Math. 144, 439–456 (2014)

    Article  MathSciNet  Google Scholar 

  13. Dubickas, A., Sha, M.: Counting and testing dominant polynomials. http://arxiv.org/abs/1407.2789 (2014)

  14. Everest, G., van der Poorten, A., Shparlinski, I.E., Ward, T.: Mathematical Surveys and Monographs. Recurrence sequences, vol. 104. American Mathematical Society, Providence (2003)

    Chapter  Google Scholar 

  15. Ferguson, R.: Irreducible polynomials with many roots of equal modulus. Acta Arith. 78, 221–225 (1997)

    MathSciNet  Google Scholar 

  16. Heyman, R.: On the number of polynomials of bounded height that satisfy the Dumas criterion. J. Int. Seq. 17, 1–7, Article 14.2.4 (2014)

  17. Heyman, R., Shparlinski, I.E.: On the number of Eisenstein polynomials of bounded height. Appl. Algebra Eng. Commun. Comp. 24, 149–156 (2013)

    Article  MathSciNet  Google Scholar 

  18. Isaacs, I.M.: Quotients which are roots of unity (solution of problem 6523). Am. Math. Mon. 95, 561–62 (1988)

    Article  MathSciNet  Google Scholar 

  19. Kuba, G.: On the distribution of reducible polynomials. Math. Slovaca 59, 349–356 (2009)

    Article  MathSciNet  Google Scholar 

  20. Masser, D., Vaaler, J.D.: Counting algebraic numbers with large height II. Trans. Am. Math. Soc. 359, 427–445 (2007)

    Article  MathSciNet  Google Scholar 

  21. Mignotte, M., Ştefănescu, D.: Polynomials: An Algorithmic Approach. Springer, Singapore (1999)

    Google Scholar 

  22. Schanuel, S.H.: Heights in number fields. Bull. Soc. Math. Fr. 107, 433–449 (1979)

    MathSciNet  Google Scholar 

  23. Pólya, G., Szegö, G.: Problems and Theorems in Analysis, vol. II. Springer, Berlin, Heidelberg, New York (1976)

  24. Prasolov, V.V.: Polynomials. Algorithms and computation in mathematics, vol. 11. Springer, Berlin (2010)

    Google Scholar 

  25. Schinzel, A.: Around Pólya’s theorem on the set of prime divisors of a linear recurrence. In: Saradha, N. (ed.) Diophantine Equations, pp. 225–233. Narosa Publishing House, New Dehli (2008)

    Google Scholar 

  26. van der Waerden, B.L.: Die Seltenheit der reduziblen Gleichungen und der Gleichungen mit Affekt. Monatshefte für Matematik Physik 43, 133–147 (1936)

    Article  Google Scholar 

  27. Waldschmidt, M.: Grundlehren der Mathematischen Wissenschaften. Diophantine approximation on linear algebraic groups, vol. 326. Springer, Berlin (2000)

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Igor E. Shparlinski for introducing them into this topic and for providing Proposition 1 which was their starting point, and also for his valuable comments on an early version of this paper. They also want to thank the referee for careful reading and useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Sha.

Additional information

Communicated by J. Schoißengeier.

The research of A. Dubickas was supported by the Research Council of Lithuania Grant MIP-068/2013/LSS-110000-740. The research of M. Sha was supported by the Australian Research Council Grant DP130100237.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dubickas, A., Sha, M. Counting degenerate polynomials of fixed degree and bounded height. Monatsh Math 177, 517–537 (2015). https://doi.org/10.1007/s00605-014-0680-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00605-014-0680-9

Keywords

Mathematics Subject Classification

Navigation