Skip to main content
Log in

Self-similar solutions for active scalar equations in Fourier–Besov–Morrey spaces

  • Published:
Monatshefte für Mathematik Aims and scope Submit manuscript

Abstract

We are concerned with a family of dissipative active scalar equation with velocity fields coupled via multiplier operators that can be of positive-order. We consider sub-critical values for the fractional diffusion and prove global well-posedness of solutions with small initial data belonging to a framework based on Fourier transform, namely Fourier–Besov–Morrey spaces. Since the smallness condition is with respect to the weak norm of this space, some initial data with large \(L^{2}\)-norm can be considered. Self-similar solutions are obtained depending on the homogeneity of the initial data and couplings. Also, we show that solutions are asymptotically self-similar at infinity. Our results can be applied in a unified way for a number of active scalar PDEs like 1D models on dislocation dynamics in crystals, Burgers’ equation, 2D vorticity equation, 2D generalized SQG, 3D magneto-geostrophic equations, among others.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Chae, D., Constantin, P., Wu, J.: Dissipative models generalizing the 2D Navier–Stokes and the surface quasi-geostrophic equations. Indiana Univ. Math. J. 61(5), 1997–2018 (2012)

  2. Chae, D., Constantin, P., Cordoba, D., Gancedo, F., Wu, J.: Generalized surface quasi-geostrophic equations with singular velocities. Commun. Pure Appl. Math. 65(8), 1037–1066 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Konieczny, P., Yoneda, T.: On dispersive effect of the Coriolis force for the stationary Navier–Stokes equations. J. Differ. Equ. 250(10), 3859–3873 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cannone, M., Karch, G.: Smooth or singular solutions to the Navier–Stokes system. J. Differ. Equ. 197, 247–274 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Kozono, H., Yamazaki, M.: Semilinear heat equations and the Navier–Stokes equation with distributions in new function spaces as initial data. Commun. Partial Differ. Equ. 19(5–6), 959–1014 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  6. Mazzucato, A.L.: Besov–Morrey spaces: function space theory and applications to non-linear PDE. Trans. Am. Math. Soc. 355(4), 1297–1364 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dong, H., Du, D., Li, D.: Finite time singularities and global well-posedness for fractal Burgers equations. Indiana Univ. Math. J. 58(2), 807–821 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Kiselev, A.: Nonlocal maximum principles for active scalars. Adv. Math. 227(5), 1806–1826 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Carrillo, J.A., Ferreira, L.C.F., Precioso, J.C.: A mass-transportation approach to a one dimensional fluid mechanics model with nonlocal velocity. Adv. Math. 231(1), 306–327 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Castro, A., Córdoba, D.: Global existence, singularities and ill-posedness for a nonlocal flux. Adv. Math. 219(6), 1916–1936 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Castro, A., Córdoba, D.: Infinite energy solutions of the surface quasi-geostrophic equation. Adv. Math. 225(4), 1820–1829 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chae, D., Córdoba, A., Córdoba, D., Fontelos, M.A.: Finite time singularities in a 1D model of the quasi-geostrophic equation. Adv. Math. 194(1), 203–223 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. Morlet, A.C.: Further properties of a continuum of model equations with globally defined flux. J. Math. Anal. Appl. 221(1), 132–160 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  14. Deslippe, J., Tedstrom, R., Daw, M., Chrzan, D., Neeraj, T., Mills, M.: Dynamics scaling in a simple one-dimensional model of dislocation activity. Philos. Mag. 84, 2445–2454 (2004)

    Article  Google Scholar 

  15. Head, A.K.: Dislocation group dynamics III. Similarity solutions of the continuum approximation. Philos. Mag. 26, 65–72 (1972)

    Article  Google Scholar 

  16. Biler, P., Karch, G., Monneau, R.: Nonlinear diffusion of dislocation density and self-similar solutions. Commun. Math. Phys. 294, 145–168 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Caffarelli, L.A., Vasseur, A.: Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation. Ann. Math. 171(3), 1903–1930 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Carrillo, J.A., Ferreira, L.C.F.: The asymptotic behaviour of subcritical dissipative quasi-geostrophic equations. Nonlinearity 21(5), 1001–1018 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. Constantin, P., Majda, A., Tabak, E.: Formation of strong fronts in the 2D quasi-geostrophic thermal active scalar. Nonlinearity 7, 1459–1533 (1994)

    MathSciNet  Google Scholar 

  20. Constantin, P., Córdoba, D., Wu, J.: On the critical dissipative quasi-geostrophic equation. Indiana Univ. Math. J. 50, 97–107 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  21. Constantin, P., Wu, J.: Behavior of solutions of 2D quasi-geostrophic equations. SIAM J. Math. Anal. 30, 937–948 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  22. Dong, H., Du, D.: Global well-posedness and a decay estimate for the critical dissipative quasi-geostrophic equation in the whole space. Discret. Contin. Dyn. Syst. 21(4), 1095–1101 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  23. Córdoba, A., Córdoba, D.: A maximum principle applied to quasi-geostrophic equations. Commun. Math. Phys. 249, 511–528 (2004)

    Article  MATH  Google Scholar 

  24. Ju, N.: The maximum principle and the global attractor for 2D dissipative quasi-geostrophic equations. Commun. Math. Phys. 255, 161–181 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kiselev, A., Nazarov, F., Volberg, A.: Global well-posedness for the critical 2D dissipative quasi-geostrophic equation. Invent. Math. 167(3), 445–453 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  26. Kiselev, A.: Regularity and blow up for active scalars. Math. Model. Nat. Phenom. 5(4), 225–255 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  27. Niche, C.J., Schonbek, M.E.: Decay of weak solutions to the 2D dissipative quasi-geostrophic equation. Commun. Math. Phys. 276, 93–115 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  28. Schonbek, M.E., Schonbek, T.P.: Asymptotic behavior to dissipative quasi-geostrophic flows. SIAM J. Math. Anal. 35, 357–375 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  29. Friedlander, S., Rusin, W., Vicol, V.: On the supercritically diffusive magnetogeostrophic equations. Nonlinearity 25(11), 3071–3097 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  30. Moffatt, H.K.: Magnetostrophic turbulence and the geodynamo. In: IUTAM Symposium on Computational Physics and New Perspectives in Turbulence. IUTAM Bookser, vol. 4, pp. 339–346. Springer, Dordrecht (2008)

  31. Friedlander, S., Vicol, V.: Global well-posedness for an advection-diffusion equation arising in magneto-geostrophic dynamics. Ann. Inst. H. Poincaré Anal. Non Linéaire 28(2), 283–301 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  32. Friedlander, S., Vicol, V.: Higher regularity of Hölder continuous solutions of parabolic equations with singular drift velocities. J. Math. Fluid Mech. 14(2), 255–266 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  33. Friedlander, S., Vicol, V.: On the ill/well-posedness and nonlinear instability of the magneto-geostrophic equations. Nonlinearity 24(11), 3019–3042 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  34. Constantin, P., Iyer, G., Wu, J.: Global regularity for a modified critical dissipative quasi-geostrophic equation. Indiana Univ. Math. J. 57(6), 2681–2692 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  35. May, R.: Global well-posedness for a modified dissipative surface quasi-geostrophic equation in the critical Sobolev space \(H^{1}\). J. Differ. Equ. 250(1), 320–339 (2011)

    Article  MATH  Google Scholar 

  36. Miao, C., Xue, L.: Global well-posedness for a modified critical dissipative quasi-geostrophic equation. J. Differ. Equ. 252(1), 792–818 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  37. Miao, C., Xue, L.: On the regularity of a class of generalized quasi-geostrophic equations. J. Differ. Equ. 251(10), 2789–2821 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  38. Ohkitani, K.: Dissipative and ideal surface quasi-geostrophic equations. Lecture presented at ICMS, Edinburgh (2010)

  39. Chae, D., Constantin, P., Wu, J.: Inviscid models generalizing the 2D Euler and the surface quasi-geostrophic equations. Arch. Ration. Mech. Anal. 202(1), 35–62 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  40. Dabkowski, M., Kiselev, A., Vicol, V.: Global well-posedness for a slightly supercritical surface quasi-geostrophic equation. Nonlinearity 25(5), 1525–1535 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  41. Ferreira, L.C.F., Lima, L.S.M.: Global well-posedness and symmetries for dissipative active scalar equations with positive-order couplings. arXiv:1305.2987

  42. Kato, T.: Strong solutions of the Navier–Stokes equations in Morrey spaces. Bol. Soc. Brasil Mat. 22(2), 127–155 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  43. Taylor, M.E.: Analysis on Morrey spaces and applications to Navier–Stokes and other evolution equations. Commun. Partial Differ. Equ. 17, 1407–1456 (1992)

    Article  MATH  Google Scholar 

  44. Cannone, M.: Harmonic Analysis Tools for Solving the Incompressible Navier–Stokes Equations. Handbook of Mathematical Fluid Dynamics, vol. III, pp. 161–244. North-Holland, Amsterdam (2004)

  45. Lemarie-Rieusset, P.G.: Recent Developments in the Navier–Stokes Equations. Research Notes in Maths, vol. 431. Chapman and Hall, London (2002)

  46. Bony, J.M.: Calcul symbolique et propagation des singularitiés pour les équations aux dérivées partielles non linéaires. Ann. de l’Ecole Norm. Sup. 14, 209–246 (1981)

    MathSciNet  MATH  Google Scholar 

  47. Yamazaki, M.: The Navier–Stokes equations in the weak-\(L^{n}\) space with time-dependent external force. Math. Ann. 317(4), 635–675 (2000)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucas C. F. Ferreira.

Additional information

Communicated by D. Lannes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferreira, L.C.F., Lima, L.S.M. Self-similar solutions for active scalar equations in Fourier–Besov–Morrey spaces. Monatsh Math 175, 491–509 (2014). https://doi.org/10.1007/s00605-014-0659-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00605-014-0659-6

Keywords

Mathematics Subject Classification

Navigation