Skip to main content
Log in

Separation of metal ions via capillary electrophoresis using a pseudostationary phase microfunctionalized with carbon nanotubes

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

This study reports on the use of dispersed multi-walled carbon nanotubes (MWCNTs) as a novel pseudostationary phase in capillary electrophoresis for the separation and determination of mono- and divalent metal ions. The use of a background electrolyte containing 1 μg⋅mL−1 of dispersed MWCNTs results in good analytical linearity, in detection limits in the range from 18.5 to 124 ng⋅mL−1, and in limits of quantifications in the range from 61 to 409 ng⋅mL−1. The method was applied to the analysis of the ions K(I), Ba(II), Ca(II), Na(I), Mg(II), Co(II), Ni(II), Zn(II), Li(I) and Cd(II) in spiked honey, and mean recoveries were found to be between 80.0 and 106.7%.

Dispersed carbon nanotubes were used as pseudostationary phase in capillary electrophoresis for the separation and determination of metal ions in honey samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

  2. Gouda AA, Al Ghannam SM (2016) Impregnated multiwalled carbon nanotubes as efficient sorbent for the solid phase extraction of trace amounts of heavy metal ions in food and water samples. Food Chem 202:409–416

  3. Wijewardane S (2009) Potential applicability of CNT and CNT/composites to implement ASEC concept: a review article. Sol Energy 83:1379–1389

    Article  CAS  Google Scholar 

  4. Li L, Huang YM, Wang Y, Wang WD (2009) Hemimicelle capped functionalized carbon nanotubes-based nanosized solid-phase extraction of arsenic from environmental water samples. Anal Chim Acta 631:182–188

    Article  CAS  Google Scholar 

  5. Dai B, Cao M, Fang G, Liu B, Dong X, Pan M, Wang S (2012) Schiff base-chitosan grafted multiwalled carbon nanotubes as a novel solid-phase extraction adsorbent for determination of heavy metal by ICP-MS. J Hazard Mater 219-220:103–110

    Article  CAS  Google Scholar 

  6. Mittal G, Dhand V, Rhee KY, Park SJ, Lee WR (2015) A review on carbon nanotubes and graphene as fillers in reinforced polymer nanocomposites. J Ind Eng Chem 21:11–25

    Article  CAS  Google Scholar 

  7. Baughman RH, Zakhidov AA, DeHeer WA (2002) Carbon nanotubes-the route toward applications. Science 297:787–792

    Article  CAS  Google Scholar 

  8. Husen A, Siddiqi KS (2014) Carbon and fullerene nanomaterials in plant system. J Nanobiotechnol 12:16

    Article  Google Scholar 

  9. Porter AE, Gass M, Muller K, Skepper JN, Midgley PA, Welland M (2007) Direct imaging of single-walled carbon nanotubes in cells. Nat Nanotechnol 2:713–717

    Article  CAS  Google Scholar 

  10. Davletkildeev NA, Stetsko DV, Bolotov VV, Stenkin YA, Korusenko PM, Nesov SN (2015) Determination of work function in the individual carbon nanotubes using electrostatic force microscopy. Mater Lett 161:534–537

    Article  CAS  Google Scholar 

  11. Alizadeh B, Ghorbani M, Salehi MA (2016) Application of polyrhodanine modified multi-walled carbon nanotubes for high efficiency removal of Pb(II) from aqueous solution. J Mol Liq 220:142–149

    Article  CAS  Google Scholar 

  12. Pereira ECL, Soares BG (2016) Conducting epoxy networks modified with non-covalently functionalized multi-walled carbon nanotube with imidazolium-based ionic liquid. J Appl Polym Sci 133:43976

    Article  Google Scholar 

  13. Peci T, Dennis TJS, Baxendale M (2015) Iron-filled multiwalled carbon nanotubes surface functionalized with paramagnetic Gd(III): a candidate dual-functioning MRI contrast agent and magnetic hyperthermia structure. Carbon 87:226–232

    Article  CAS  Google Scholar 

  14. Meng LJ, Fu CL, Lu QH (2009) Advanced technology for functionalization of carbon nanotubes. Prog Nat Sci 19:801–810

    Article  CAS  Google Scholar 

  15. Feist B (2016) Selective dispersive micro solid-phase extraction using oxidized multiwalled carbon nanotubes modified with 1,10-phenanthroline for preconcentration of lead ions. Food Chem 209:37–42

    Article  CAS  Google Scholar 

  16. Moliner-Martínez Y, Cárdenas S, Valcárcel M (2007) Evaluation of carbon nanostructures as chiral selectors for direct enantiomeric separation of ephedrines by EKC. Electrophoresis 28:2573–2579

    Article  Google Scholar 

  17. Wang Z, Luo G, Chen J, Xiao S, Wang Y (2003) Carbon nanotubes as separation carrier in capillary electrophoresis. Electrophoresis 24:4181–4188

    Article  CAS  Google Scholar 

  18. Xiong X, Ouyang J, Baeyens WRG, Delanghe JR, Shen X, Yang Y (2006) Enhanced separation of purine and pyrimidine bases using carboxylic multiwalled carbon nanotubes as additive in capillary zone electrophoresis. Electrophoresis 27:3243–3253

    Article  CAS  Google Scholar 

  19. Suárez B, Simonet BM, Cárdenas S, Valcárcel M (2007) Surfactant-coated single-walled carbon nanotubes as a novel pseudostationary phase in capillary EKC. Electrophoresis 28:1714–1722

    Article  Google Scholar 

  20. Cao J, Li P, Yi L (2011a) Ionic liquids coated multi-walled carbon nanotubes as a novel pseudostationary phase in electrokinetic chromatography. J Chromatogr A 1218:9428–9434

    Article  CAS  Google Scholar 

  21. Cao J, Li P, Chen J, Tan T, Dai HB (2013) Enhanced separation of compound Xueshuantong capsule using functionalized carbon nanotubes with cationic surfactant solutions in MEEKC. Electrophoresis 34:324–330

    Article  CAS  Google Scholar 

  22. Cao J, Dun W, Qu H (2011b) Evaluation of the addition of various surfactant-suspended carbon nanotubes in MEEKC with an in situ-synthesized surfactant system. Electrophoresis 32:408–413

    Article  CAS  Google Scholar 

  23. Na N, Hua Y, Ouyang J, Baeyens WRG, Delanghe JR, Taes YEC, Xie M, Chen H, Yang Y (2006) On the use of dispersed nanoparticles modified with single layer β-cyclodextrin as chiral selector to enhance enantioseparation of clenbuterol with capillary electrophoresis. Talanta 69:866–872

    Article  CAS  Google Scholar 

  24. Maria Rizelio V, Gonzaga LV, Campelo Borges GS, Maltez HF, Oliveira Costa AC, Fett R (2012) Fast determination of cations in honey by capillary electrophoresis: a possible method for geographic origin discrimination. Talanta 99:450–456

    Article  Google Scholar 

  25. Kujawski MW, Namieśnik J (2011) Levels of 13 multi-class pesticide residues in polish honeys determined by LC-ESI-MS/MS. Food Control 22:914–919

    Article  CAS  Google Scholar 

  26. Tuberoso CIG, Jerković I, Bifulco E, Marijanovic Z, Congiu F, Bubalo D (2012) Riboflavin and lumichrome in Dalmatian sage honey and other unifloral honeys determined by LC-DAD technique. Food Chem 135:1985–1990

    Article  CAS  Google Scholar 

  27. Burguera M, Burguera JL (2007) On-line electrothermal atomic adsorption spectrometry configurations: recent developments and trends. Spectrochim Acta B 62:884–896

    Article  Google Scholar 

  28. Faraji M, Yamini Y, Saleh A, Rezaee M, Ghambarian M, Hassani R (2010) A nanoparticle-based solid-phase extraction procedure followed by flow injection inductively coupled plasma-optical emission spectrometry to determine some heavy metal ions in water samples. Anal Chim Acta 659:172–177

    Article  CAS  Google Scholar 

  29. Daftsis EJ, Zachariadis GA (2007) Analytical performance of ETAAS method for Cd, Co, Cr and Pb determination in blood fractions samples. Talanta 71:722–730

    Article  CAS  Google Scholar 

  30. Huang CZ, Xie W, Li X, Zhang JP (2011) Speciation of inorganic arsenic in environmental waters using magnetic solid phase extraction and preconcentration followed by ICP-MS. Microchim Acta 173:165–172

    Article  CAS  Google Scholar 

  31. Shakulashvili N, Faller T, Engelhardt H (2000) Simultaneous determination of alkali, alkaline earth and transition metal ions by capillary electrophoresis with indirect UV detection. J Chromatogr A 895:205–212

    Article  CAS  Google Scholar 

  32. Liu B, Zhang Y, Mayer D, Krause HJ, Jin Q, Zhao J, Offenhäusser A, Xu Y (2012) Determination of heavy metal ions by microchip capillary electrophoresis coupled with contactless conductivity detection. Electrophoresis 33:1247–1250

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (81573552), the Zhejiang Provincial Natural Science Foundation of China (LY15H280016), the Hangzhou social development of scientific research projects (No. 20150533B05), and the New-shoot Talents Program of Zhejiang Province (2016R423072).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Cao.

Ethics declarations

The authors declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOCX 419 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, LQ., Ye, LH., Cao, J. et al. Separation of metal ions via capillary electrophoresis using a pseudostationary phase microfunctionalized with carbon nanotubes. Microchim Acta 184, 1747–1754 (2017). https://doi.org/10.1007/s00604-017-2172-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-017-2172-9

Keywords

Navigation