Skip to main content
Log in

Paper matrix based array for rapid and sensitive optical detection of mercury ions using silver enhancement

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The authors describe a nitrocellulose membrane based paper matrix array for detection of mercury(II) with high throughput and repeatability. A thymine-rich signal reporting ssDNA probe labeled with gold nanoparticles (AuNPs) was designed, and detection is based on the strong T-Hg-T interaction which leads to a significant color change. In addition, catalytic signal amplification is accomplished by silver staining in order to enhance coloration. The method has a detection limit as low 0.5 ppt. This is at least 500-fold better than that of existing methods. By using an array, multiple sets of duplicate detections can be carried out simultaneously and in parallel. This improves the efficiency and accuracy of the assay. The method shows remarkable specificity since the signal of other competing metal ions is negligible compared to that of mercury(II) even at 100-fold higher concentration. The protocol was successfully applied to the determination of Hg(II) in spiked tap water and lake water samples. In our perception, this assay is a most promising tool for optical determination f ultra-low levels of Hg(II).

Metal deposition based signal enhancement strategy is successful applied in the paper-matrix based array protocol for rapid and accurate detection of mercury ions. 500-fold amplification effect is achieved for mercury ion detection with the detection limit of 0.5 ppt by bare-eye observation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Oehme I, Wolfbeis OS (1997) Optical sensors for determination of heavy metal ions. Microchim Acta 126:177–192

    Article  CAS  Google Scholar 

  2. Deng Y, Wang X, Xue F, Zheng L, Liu J, Yan F, Xia F, Chen W (2015) Ultrasensitive and rapid screening of mercury(II) ions by dual labeling colorimetric method in aqueous samples and applications in mercury-poisoned animal tissues. Anal Chim Acta 868:45–52

    Article  CAS  Google Scholar 

  3. Sener G, Uzun L, Denizli A (2014) Lysine-promoted colorimetric response of gold nanoparticles: a simple assay for ultrasensitive mercury (II) detection. Anal Chem 86(1):514–520

    Article  CAS  Google Scholar 

  4. Chen YJ, Yao L, Deng Y, Pan DD, Ogabiela E, Cao JX, Chen W (2015) Rapid and ultrasensitive colorimetric detection of mercury (II) by chemically initiated aggregation of gold nanoparticles. Microchim Acta 182:2147–2154

    Article  CAS  Google Scholar 

  5. Shamsipur M, Safavi A, Mohammadpour Z, Ahmadi R (2016) Highly selective aggregation assay for visual detection of mercury ion based on competitive binding of sulfur-doped carbon nanodots to gold nanoparticles and mercury ions. Microchim Acta 183:2327–2335

    Article  CAS  Google Scholar 

  6. TY H, Yan X, Na WD, XG S (2016) Aptamer-based aggregation assay for mercury(II) using gold nanoparticles and fluorescent CdTe quantum dots. Microchim Acta 183:1831–1836

    Article  Google Scholar 

  7. Chen ZB, Zhang CM, Tan Y, Zhou TH, Ma H, Wan CQ, Lin YQ, Li K (2015) Chitosan-functionalized gold nanoparticles for colorimetric detection of mercury ions based on chelation-induced aggregation. Microchim Acta 182:611–616

    Article  CAS  Google Scholar 

  8. Hezard T, Laffont L, Gros P, Behra P, Evrard D (2013) Hg (II) trace electrochemical detection on gold electrode: evidence for chloride adsorption as the responsible for the broad baseline. J Electroanal Chem 697(9):28–31

    Article  CAS  Google Scholar 

  9. Zhang Z, Fu X, Li K, Li K, Liu R, Peng D, He L, Wang M, Zhang H, Zhou L (2015) One-step fabrication of electrochemical biosensor based on DNA-modified three-dimensional reduced graphene oxide and chitosan nanocomposite for highly sensitive detection of Hg(II). Sensor Actuat B-Chem 225:453–462

    Article  Google Scholar 

  10. Tang J, Huang YP, Zhang CC, Liu HQ, Tang DP (2016) DNA-based electrochemical determination of mercury (II) by exploiting the catalytic formation of gold amalgam and of silver nanoparticles. Microchim Acta 183:1805–1812

    Article  CAS  Google Scholar 

  11. Ding C, Nohira T, Hagiwara R, Fukunaga A, Sakai S, Nitta K (2015) Electrochemical performance of hard carbon negative electrodes for ionic liquid-based sodium ion batteries over a wide temperature range. Electrochim Acta 176:344–349

    Article  CAS  Google Scholar 

  12. Li Z, Liu M, Fan L, Ke H, Luo C, Zhao G (2014) A highly sensitive and wide-ranged electrochemical zinc(II) aptasensor fabricated on core–shell SiO2 -Pt@meso-SiO2. Biosens Bioelectron 52(4):293–297

    Article  CAS  Google Scholar 

  13. Lee SJ, Moskovits M (2011) Visualizing chromatographic separation of metal ions on a surface-enhanced Raman active medium. Nano Lett 11(1):145–150

    Article  CAS  Google Scholar 

  14. Liu M, Wang Z, Zong S, Chen H, Zhu D, Wu L, Hu G, Cui Y (2014) SERS detection and removal of mercury(II)/silver(I) using oligonucleotide-functionalized core/shell magnetic silica sphere@Au nanoparticles. ACS Appl Mater Interfaces 6(10):7371–7379

    Article  CAS  Google Scholar 

  15. Xu Y, Liu M, Kong N, Liu J (2016) Lab-on-paper micro-and nano-analytical devices: fabrication, modification, detection and emerging applications. Microchim Acta 183:1521–1542

    Article  CAS  Google Scholar 

  16. Hofmann D, Fritz L, Ulbrich J, Schepers C, Bohning M (2000) Detailed-atomistic molecular modeling of small molecule diffusion and solution processes in polymeric membrane materials. Macromol Theory Simul 9(6):293–327

    Article  CAS  Google Scholar 

  17. Mei ZL, Deng Y, Chu H, Xue F, Zhong Y, JJ W, Yang H, Wang ZC, Zheng L, Chen W (2012) Immunochromatographic lateral flow strip for on-site detection of bisphenol a. Microchim Acta 180(3–4):279–285

    Google Scholar 

  18. Mei ZL, Qu W, Deng Y, Chu HQ, Cao J, Xue F, Zheng L, El-Nezamic HS, Wu Y, Chen W (2013) One-step signal amplified lateral flow strip biosensor for ultrasensitive and on-site detection of bisphenol a (BPA) in aqueous samples. Biosens Bioelectron 49:457–461

    Article  CAS  Google Scholar 

  19. Nguyen BT, Koh G, Lim HS, Chua AJS, Ng MML, Toh CS (2009) Membrane-based electrochemical nanobiosensor for the detection of virus. Anal Chem 81(17):7226–7234

    Article  CAS  Google Scholar 

  20. Jackeray R, Abid CKVZ, Singh G, Jain S, Chattopadhyaya S (2011) Selective capturing and detection of salmonella typhi on polycarbonate membrane using bioconjugated quantum dots. Talanta 84(3):952–962

    Article  CAS  Google Scholar 

  21. Shu HA, CY Y, Ang GY, Chan YY, Alias YB, Khor SM (2015) A colloidal gold-based lateral flow immunoassay for direct determination of haemoglobin A1c in whole blood. Anal Methods 7(9):3972–3980

    Article  Google Scholar 

  22. Li X, Li W, Yang Q, Gong X, Guo W, Dong C, Liu J, Xuan L, Chang J (2014) Rapid and quantitative detection of prostate specific antigen with a quantum dot nanobeads-based immunochromatography test strip. ACS Appl Mater Interfaces 6(9):6406–6414

    Article  CAS  Google Scholar 

  23. Nash MA, Waitumbi JN, Hoffman AS, Yager P, Stayton PS (2012) Multiplexed enrichment and detection of malarial biomarkers using a stimuli-responsive iron oxide and gold nanoparticle reagent system. ACS Nano 6(8):6776–6785

    Article  CAS  Google Scholar 

  24. Quesada-González D, Merkoçi A (2015) Nanoparticle-based lateral flow biosensors. Biosens Bioelectron 73(2):47–63

    Article  Google Scholar 

  25. Guo Y, Ngom B, Le T, Jin X, Wang L, Shi D, Wang X, Bi D (2010) Utilizing three monoclonal antibodies in the development of an immunochromatographic assay for simultaneous detection of sulfamethazine, sulfadiazine, and sulfaquinoxaline residues in egg and chicken muscle. Anal Chem 82(18):7550–7555

    Article  CAS  Google Scholar 

  26. Li YS, Zhou Y, Lu SY, Guo DJ, Ren HL, Meng XM, Zhi BH, Lin C, Wang Z, Li XB, Liu ZS (2012) Development of a one-step test strip for rapid screening of fumonisins B1, B2 and B3 in maize. Food Control 24(s 1–2):72–77

    Article  CAS  Google Scholar 

  27. Wang H, Feng N, Yang S, Wang C, Wang T, Gao Y, Su J, Zheng X, Hou X, Huang H, Yang R, Zou X, Huang G, Xia X (2010) A rapid immunochromatographic test strip for detecting rabies virus antibody. J Virol Methods 170(1–2):80–85

    Article  CAS  Google Scholar 

  28. Zhao Y, Zhang G, Liu Q, Teng M, Yang J, Wang J (2008) Development of a lateral flow colloidal gold immunoassay strip for the rapid detection of Enrofloxacin residues. J Agric Food Chem 56(24):12138–12142

    Article  CAS  Google Scholar 

  29. Glynou K, Ioannou PC, Christopoulos TK, Syriopoulou S (2003) Oligonucleotide-functionalized gold nanoparticles as probes in a dry-reagent strip biosensor for DNA analysis by hybridization. Anal Chem 75(16):4155–4160

    Article  CAS  Google Scholar 

  30. Miyake Y, Togasshi H, Togasshi M, Yamaguchi H, Oda S, Kudo M, Tanaka Y, Kondo Y, Sawa R, Fujimoto T, Machinami T, Ono A (2006) MercuryII-mediated formation of thymine-HgII -Thymine Base pairs in DNA duplexes. J Am Chem Soc 128:2172–2173

    Article  CAS  Google Scholar 

  31. He Y, Zhang X, Zeng K, Zhang S, Baloda M, Gurung AS, Liu G (2011) Visual detection of Hg2+ in aqueous solution using gold nanoparticles and thymine-rich hairpin DNA probes. Biosens Bioelectron 26(11):4464–4470

    Article  CAS  Google Scholar 

  32. Zhu M, Wang Y, Deng Y, Yao L, Adeloju SB, Pan D, Xue F, Wu Y, Zheng L, Chen W (2014) Ultrasensitive detection of mercury with a novel one-step signal amplified lateral flow strip based on gold nanoparticle-labeled ssDNA recognition and enhancement probes. Biosens Bioelectron 61:14–20

    Article  CAS  Google Scholar 

  33. Hu SW, Xu BY, Ye WK, Xia XH, Chen HY, Xu JJ (2015) Versatile microfluidic droplets array for bioanalysis. ACS Appl Mater Interfaces 7(1):935–940

    Article  CAS  Google Scholar 

  34. Huang JA, Zhao YQ, Zhang XJ, He LF, Wong TL, Chui YS, Zhang WJ, Lee ST (2013) Ordered Ag/Si nanowires array: wide-range surface-enhanced Raman spectroscopy for reproducible biomolecule detection. Nano Lett 13(11):5039–5045

    Article  CAS  Google Scholar 

  35. Martin KJ, Graner E, Li Y, Price LM, Kritzman BM, Fournier MV, Rhei E, Pardee AB (2001) High-sensitivity array analysis of gene expression for the early detection of disseminated breast tumor cells in peripheral blood. Proc Natl Acad Sci US A 98(5):2646–2651

    Article  CAS  Google Scholar 

  36. Shi Q, Song C, Zhao S, Li J, Zeng H, Wu S, Guo H, Li H, Liu C, Liu Q (2015) A new spot quality control for protein macroarray based on immunological detection. Talanta 138:176–182

    Article  Google Scholar 

  37. Liu L, Lin H (2014) Paper-based colorimetric Array test strip for selective and Semiquantitative multi-ion analysis: simultaneous detection of Hg2+, Ag+, and Cu2+. Anal Chem 86(17):8829–8834

    Article  CAS  Google Scholar 

  38. Charlermroj R, Makornwattana M, Grant IR, Elliott CT, Karoonuthaisiri N (2016) Validation of a high-throughput immunobead array technique for multiplex detection of three foodborne pathogens in chicken products. Int J Food Microbiol 224:47–54

    Article  CAS  Google Scholar 

  39. Song E, Yu M, Wang Y, Hu W, Cheng D, Swihart MT, Song Y (2015) Multi-color quantum dot-based fluorescence immunoassay array for simultaneous visual detection of multiple antibiotic residues in milk. Biosens Bioelectron 72:320–325

    Article  CAS  Google Scholar 

  40. Wang YK, Yan YX, Li SQ, Wang HA, Ji WH, Sun JH (2013) Simultaneous quantitative determination of multiple mycotoxins in cereal and feedstuff samples by a suspension array immunoassay. J Agric Food Chem 61(46):10948–10953

    Article  CAS  Google Scholar 

  41. Thaxton CS, Georganopoulou DG, Mirkin CA (2006) Gold nanoparticle probes for the detection of nucleic acid targets. Clin Chim Acta 363(1–2):120–126

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the NSFC grant of 21475030 and 31301460, the 12th Five Years Key Programs 2012BAK17B10, National and Zhejiang Public Benefit Research Project (2014C32051, 201510025).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Chen.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOCX 1357 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, L., Teng, J., Qu, H. et al. Paper matrix based array for rapid and sensitive optical detection of mercury ions using silver enhancement. Microchim Acta 184, 569–576 (2017). https://doi.org/10.1007/s00604-016-2052-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-016-2052-8

Keywords

Navigation