Skip to main content
Log in

Fluorometric determination of the antibiotic kanamycin by aptamer-induced FRET quenching and recovery between MoS2 nanosheets and carbon dots

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A rapid and sensitive aptamer-based assay is described for kanamycin, a veterinary antibiotic with neurotoxic side effects. It is based on a novel FRET pair consisting of fluorescent carbon dots and layered MoS2. This donor-acceptor pair (operated at excitation/emission wavelengths of 380/440 nm) shows fluorescence recovery efficiencies reaching 93 %. By taking advantages of aptamer-induced fluorescence quenching and recovery, kanamycin can be quantified in the of 4–25 μM concentration range, with a detection limit of 1.1 μM. The method displays good specificity and was applied to the determination of kanamycin in spiked milk where it gave recoveries ranging from 85 % to 102 %, demonstrating that the method serves as a promising tool for the rapid detection of kanamycin in milk and other animal-derived foodstuff.

A fluorometric aptasensor was developed for the determination of kanamycin. It is based on a novel FRET pair of carbon dots and layered MoS2. The fluorescence recovery efficiency reached 93 % with a good sensitivity, specificity and recoveries in spiked milk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Jin Y, Jang WJ, Han CH, Lee MH (2006) Development of immunoassays for the detection of kanamycin in veterinary fields. J Vet Sci 7(2):111–117

    Article  Google Scholar 

  2. U.S. National Library of Medicine http://dailymed.nlm.nih.gov/

  3. Song KM, Cho M, Jo H, Min K, Jeon SH, Kim T, Han MS, Ku JK, Ban C (2011) Gold nanoparticle-based colorimetric detection of kanamycin using a DNA aptamer. Anal Biochem 415(2):175–181

    Article  CAS  Google Scholar 

  4. Xing YP, Liu C, Zhou XH, Shi HC (2015) Label-free detection of kanamycin based on a G-quadruplex DNA aptamer-based fluorescent intercalator displacement assay. Sci Rep 5:8125

    Article  CAS  Google Scholar 

  5. Zhu Y, Chandra P, Song KM, Ban C, Shim YB (2012) Label-free detection of kanamycin based on the aptamer-functionalized conducting polymer/gold nanocomposite. Biosens Bioelectron 36(1):29–34

    Article  CAS  Google Scholar 

  6. Tombelli S, Minunni M, Mascini M (2007) Aptamers-based assays for diagnostics, environmental and food analysis. Biomol Eng 24(2):191–200

    Article  CAS  Google Scholar 

  7. Liu J, Guan Z, Lv Z, Jiang X, Yang S, Chen A (2014) Improving sensitivity of gold nanoparticle based fluorescence quenching and colorimetric aptasensor by using water resuspended gold nanoparticle. Biosens Bioelectron 52:265–270

    Article  CAS  Google Scholar 

  8. Wu S, Duan N, Ma X, Xia Y, Wang H, Wang Z, Zhang Q (2012) Multiplexed fluorescence resonance energy transfer aptasensor between upconversion nanoparticles and graphene oxide for the simultaneous determination of mycotoxins. Anal Chem 84(14):6263–6270

    Article  CAS  Google Scholar 

  9. Tianyu H, Xu Y, Weidan N, Xingguang S (2016) Aptamer-based aggregation assay for mercury (II) using gold nanoparticles and fluorescent CdTe quantum dots. Microchim Acta 183(7):2131–2137

    Article  Google Scholar 

  10. Wang GL, Hu XL, Wu XM, Dong YM, Li ZJ (2016) Fluorescent aptamer-based assay for thrombin with large signal amplification using peroxidase mimetics. Microchim Acta 183(2):765–771

    Article  CAS  Google Scholar 

  11. Yi Z, Li XY, Gao Q, Tang LJ, Chu X (2013) Aptamer-aided target capturing with biocatalytic metal deposition: an electrochemical platform for sensitive detection of cancer cells. Analyst 138(7):2032–2037

    Article  CAS  Google Scholar 

  12. Tan W, Donovan MJ, Jiang J (2013) Aptamers from cell-based selection for bioanalytical applications. Chem Rev 113(4):2842–2862

    Article  CAS  Google Scholar 

  13. Song S, Wang L, Li J, Fan C, Zhao J (2008) Aptamer-based biosensors. TrAC Trends Anal Chem 27(2):108–117

    Article  CAS  Google Scholar 

  14. Chen T, Shukoor MI, Chen Y, Yuan Q, Zhu Z, Zhao Z, Basri G, Tan W (2011) Aptamer-conjugated nanomaterials for bioanalysis and biotechnology applications. Nanoscale 3(2):546–556

    Article  CAS  Google Scholar 

  15. Zhang C, Yuan Y, Zhang S, Wang Y, Liu Z (2011) Biosensing platform based on fluorescence resonance energy transfer from upconverting nanocrystals to graphene oxide. Angew Chem Int Ed 50(30):6851–6854

    Article  CAS  Google Scholar 

  16. Li W, Yang X, Wang K, Tan W, Li H, Ma C (2008) FRET-based aptamer probe for rapid angiogenin detection. Talanta 75(3):770–774

    Article  CAS  Google Scholar 

  17. Shi L, De Paoli V, Rosenzweig N, Rosenzweig Z (2006) Synthesis and application of quantum dots FRET-based protease sensors. J Am Chem Soc 128(32):10378–10379

    Article  CAS  Google Scholar 

  18. Duan N, Wu S, Dai S, Miao T, Chen J, Wang Z (2015) Simultaneous detection of pathogenic bacteria using an aptamer based biosensor and dual fluorescence resonance energy transfer from quantum dots to carbon nanoparticles. Microchim Acta 182(5–6):917–923

    Article  CAS  Google Scholar 

  19. Yu C, Li X, Zeng F, Zheng F, Wu S (2013) Carbon-dot-based ratiometric fluorescent sensor for detecting hydrogen sulfide in aqueous media and inside live cells. Chem Commun 49(4):403–405

    Article  CAS  Google Scholar 

  20. Dai H, Shi Y, WangY SY, Hu J, Ni P, Li Z (2014) A carbon dot based biosensor for melamine detection by fluorescence resonance energy transfer. Sensors Actuators B Chem 202:201–208

    Article  CAS  Google Scholar 

  21. Yang R, Jin J, Chen Y, Shao N, Kang H, Xiao Z, Tang Z, Wu Y, Zhu Z, Tan W (2008) Carbon nanotube-quenched fluorescent oligonucleotides: probes that fluoresce upon hybridization. J Am Chem Soc 130(26):8351–8358

    Article  CAS  Google Scholar 

  22. Zhu C, Zeng Z, Li H, Li F, Fan C, Zhang H (2013) Single-layer MoS2-based nanoprobes for homogeneous detection of biomolecules. J Am Chem Soc 135(16):5998–6001

    Article  CAS  Google Scholar 

  23. Ding J, Zhou Y, Li Y, Guo S, Huang X (2016) MoS2 nanosheet assembling superstructure with a three-dimensional ion accessible site: a new class of bifunctional materials for batteries and electrocatalysis. Chem Mater 28(7):2074–2080

    Article  CAS  Google Scholar 

  24. Ge J, Ou EC, Yu RQ, Chu X (2014) A novel aptameric nanobiosensor based on the self-assembled DNA–MoS2 nanosheet architecture for biomolecule detection. J Mater Chem B 2(6):625–628

    Article  CAS  Google Scholar 

  25. Singh P, Gupta R, Sinha M, Kumar R, Bhalla V (2016) MoS2 based digital response platform for aptamer based fluorescent detection of pathogens. Microchim Acta 183(4):1501–1506

    Article  CAS  Google Scholar 

  26. Wang K, Wang J, Fan J, Lotya M, O’Neill A, Fox D, Feng Y, Zhang X, Jiang B, Zhao Q, Zhang H, Coleman JN, Zhang L, Zhang H (2013) Ultrafast saturable absorption of two-dimensional MoS2 nanosheets. ACS Nano 7(10):9260–9267

    Article  CAS  Google Scholar 

  27. Li BL, Luo HQ, Lei JL, Li NB (2014) Hemin-functionalized MoS2 nanosheets: enhanced peroxidase-like catalytic activity with a steady state in aqueous solution. RSC Adv 4(46):24256–24262

    Article  CAS  Google Scholar 

  28. Guo Y, Wang Z, Shao H, Jiang X (2013) Hydrothermal synthesis of highly fluorescent carbon nanoparticles from sodium citrate and their use for the detection of mercury ions. Carbon 52:583–589

    Article  CAS  Google Scholar 

  29. National Standard of China. Determination of streptomycin, dihydrostreptomycin and kanamycin residues in milk and milk powder–LC-MS-MS method. GB/T 22969–2008

  30. Nicolosi V, Chhowalla M, Kanatzidis MG, Strano MS, Coleman JN (2013) Liquid exfoliation of layered materials. Science 340(6139):1226419

    Article  Google Scholar 

  31. Splendiani A, Sun L, Zhang Y, Li T, Kim J, Chim CY, Galli G, Wang F (2010) Emerging photoluminescence in monolayer MoS2. Nano Lett 10(4):1271–1275

    Article  CAS  Google Scholar 

  32. Beal AR, Knights JC, Liang WY (1972) Transmission spectra of some transition metal dichalcogenides. II. Group VIA: trigonal prismatic coordination. J Phys C Solid State Phys 5(24):3540

    Article  CAS  Google Scholar 

  33. Cui X, Zhu L, Wu J, Hou Y, Wang P, Wang Z, Yang M (2015) A fluorescent biosensor based on carbon dots-labeled oligodeoxyribonucleotide and graphene oxide for mercury (II) detection. Biosens Bioelectron 63:506–512

    Article  CAS  Google Scholar 

  34. Liu C, Lu C, Tang Z, Chen X, Wang G, Sun F (2015) Aptamer-functionalized magnetic nanoparticles for simultaneous fluorometric determination of oxytetracycline and kanamycin. Microchim Acta 182(15–16):2567–2575

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Science & Technology Pillar Program of China (No. 2014BAD13B05) and the Yangling Agricultural Hi-tech Industries Demonstration Zone (2014NY-35).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dongjun Hou or Jianlong Wang.

Ethics declarations

The author(s) declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Ma, T., Ma, S. et al. Fluorometric determination of the antibiotic kanamycin by aptamer-induced FRET quenching and recovery between MoS2 nanosheets and carbon dots. Microchim Acta 184, 203–210 (2017). https://doi.org/10.1007/s00604-016-2011-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-016-2011-4

Keywords

Navigation