Skip to main content
Log in

Highly sensitive photometric determination of cyanide based on selective etching of gold nanorods

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The authors show that gold nanorods (AuNRs) are viable optical nanoprobes for the determination of cyanide ions. The method is based on the measurement of localized surface plasmon resonance (SPR) absorption which strongly depends on the width-to-height ratio of AuNRs. AuNRs are selectively etched by cyanide at the transverse faces, this leading to a decrease in the AuNR aspect ratio and resulting in a blue-shifted SPR absorption and color change from peacock blue to pink. The mechanism of selective etching of the AuNR tips was studied, and optimum conditions for etching were established. The absorption ratio of transverse to longitudinal SPR absorptions (at 538 and 640 nm, respectively) was proportional to the concentration of cyanide in the range from 1.65 nM to 0.5 mM, with a 0.5 nM detection limit. This colorimetric assay is selective, sensitive, and has been successfully applied to quantify cyanide in spiked tap, pond, and waste water.

Schematic illustration of the gold nanorod (AuNR) etching process induced by CN¯. The AuNR is capped with cetyltrimethylammonium bromide (CTAB) micelles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Shifrin NS, Beck BD, Gauthier TD, Chapnick SD, Goodman G (1996) Chemistry, toxicology, and human health risk of cyanide compounds in soils at former manufactured gas plant sites. Regul Toxicol Pharmacol 23:106–116

    Article  CAS  Google Scholar 

  2. Eisler R (1991) Cyanide hazards to fish, wildlife, and invertebrates: a synoptic review. Biol Rep 85:1–58

    Google Scholar 

  3. U.S. EPA (1999) Integrated Risk Information System (IRIS) on Cyanide. National Center for Environmental Assessment, Office of Research and Development, Washington, DC., http://cfpub.epa.gov/ncea/iris/iris_documents/documents/subst/0060_summary.pdf. Accessed 16 May 20.

  4. Ren J, Zhu W, Tian H (2008) A highly sensitive and selective chemosensor for cyanide. Talanta 75:760–764

    Article  CAS  Google Scholar 

  5. Wu X (2012) Molecular imprinting for anion recognition in aqueous media. Microchim Acta 176:23–47

    Article  CAS  Google Scholar 

  6. Gao J, Guo L, Wu J, Feng J, Wang S, Lai F, Xie J, Tian Z (2014) Simple and sensitive detection of cyanide using pinhole shell-isolated nanoparticle-enhanced Raman spectroscopy. J Raman Spectrosc 45:619–626

    Article  CAS  Google Scholar 

  7. Noroozifar M, Khorasani-Motlagh M, Taheri A (2011) Determination of cyanide in wastewaters using modified glassy carbon electrode with immobilized silver hexacyanoferrate nanoparticles on multiwall carbon nanotube. J Hazard Mater 185:255–261

    Article  CAS  Google Scholar 

  8. Ghanavati M, Azad RR, Mousavi SA (2014) Amperometric inhibition biosensor for the determination of cyanide. Sensors Actuators B Chem 190:858–864

    Article  CAS  Google Scholar 

  9. Liu G, Liu J, Hara K, Wang Y, Yu Y, Gao L, Li L (2009) Rapid determination of cyanide in human plasma and urine by gas chromatography–mass spectrometry with two-step derivatization. J Chromatogr B 877:3054–3058

    Article  CAS  Google Scholar 

  10. Noroozifar M, Khorasani-Motlagh M, Hosseini SN (2005) Flow injection analysis–flame atomic absorption spectrometry system for indirect determination of cyanide using cadmium carbonate as a new solid-phase reactor. Anal Chim Acta 528:269–273

    Article  CAS  Google Scholar 

  11. Cyanide Test Method (2016) colorimetric with test strips and reagents 1, 3, 10, 30 mg/l CN MQuant™, http://www.merckmillipore.com/DE/en/product/Cyanide-Test,MDA_CHEM-110044.

  12. Dräger Gas Detection.(2016) http://www.draeger.com/sites/assets/PublishingImages/Products/cin_x-zone_5000/ US/gas-detection-br-9041145 -us.pdf.

  13. Randviir EP, Banks CE (2015) The latest developments in quantifying cyanide and hydrogen cyanide. Trends Anal Chem 64:75–85

    Article  CAS  Google Scholar 

  14. Dong Y, Wang R, Tian W, Chi Y, Chen G (2014) Turn-on” fluorescent detection of cyanide based on polyamine-functionalized carbon quantum dots. RSC Adv 4:3701–3705

    CAS  Google Scholar 

  15. Shamsipur M, Rajabi HR (2014) Pure zinc sulfide quantum dot as highly selective luminescent probe for determination of hazardous cyanide ion. Mater Sci Eng C 36:139–145

    Article  CAS  Google Scholar 

  16. Ensafi AA, Kazemifard N, Rezaei B (2015) Label-free and turn-on fluorescent cyanide sensor based on CdTe quantum dots using silver nanoparticles. RSC Adv 5:40088–40093

    Article  CAS  Google Scholar 

  17. Kim MH, Kim S, Jang HH, Yi S, Seo SH, Han MS (2010) A gold nanoparticle-based colorimetric sensing ensemble for the colorimetric detection of cyanide ions in aqueous solution. Tetrahedron Lett 51:4712–4716

    Article  CAS  Google Scholar 

  18. Hajizadeh S, Farhadi K, Forough M, Sabzi RE (2011) Silver nanoparticles as a cyanide colorimetric sensor in aqueous media. Anal Methods 3:2599–2603

    Article  CAS  Google Scholar 

  19. Zeng JB, Cao YY, Chen JJ, Wang XD, JF Y, BB Y, Yan ZF, Chen X (2014) Au@Ag core/shell nanoparticles as a colorimetric probe for cyanide sensing. Nanoscale 6:9939–9943

    Article  CAS  Google Scholar 

  20. Zhang G, Qiao Y, Xu T, Zhang C, Zhang Y, Shi L, Shuang S, Dong C (2015) Highly selective and sensitive nanoprobes for cyanide based on gold nanoclusters with red fluorescence emission. Nanoscale 7:12666–12672

    Article  CAS  Google Scholar 

  21. Mu J, Feng Q, Chen X, Li J, Wang H, Li MJ (2015) Silica nanoparticles doped with an iridium (III) complex for rapid and fluorometric detection of cyanide. Microchim Acta 182:2561–2566

    Article  CAS  Google Scholar 

  22. Cao J, Sun T, Grattan KTV (2014) Gold nanorod-based localized surface plasmon resonance biosensors: a review. Sensors Actuators B Chem 195:332–351

    Article  CAS  Google Scholar 

  23. Chen H, Shao L, Lia Q, Wang J (2013) Gold nanorods and their plasmonic properties. Chem Soc Rev 42:2679–2724

    Article  CAS  Google Scholar 

  24. Jana NR, Gearheart L, Obare SO, Murphy CJ (2002) Anisotropic chemical reactivity of gold spheroids and nanorods. Langmuir 18:922–927

    Article  CAS  Google Scholar 

  25. Rodríguez-Fernández J, Pérez-Juste J, Mulvaney P, Liz-Marzán LM (2005) Spatially-directed oxidation of gold nanoparticles by Au(III)-CTAB complexes. J Phys Chem B 109:14259–14261

    Article  Google Scholar 

  26. Tsung CK, Kou X, Shi Q, Zhang J, Yeung MH, Wang J, Stucky GD (2006) Selective shortening of single-crystalline gold nanorods by mild oxidation. J Am Chem Soc 128:5352–5353

    Article  CAS  Google Scholar 

  27. Green TA (2014) Gold etching for microfabrication. Gold Bull 47:205–216

    Article  CAS  Google Scholar 

  28. Zou R, Guo X, Yang J, Li D, Peng F, Zhang L, Wang H, Yu H (2009) Selective etching of gold nanorods by ferric chloride at room temperature. CrystEngComm 11:2797–2803

    Article  CAS  Google Scholar 

  29. Thatai S, Khurana P, Prasad S, Kumar D (2014) A new way in nanosensors: gold nanorods for sensing of Fe(III) ions in aqueous media. Microchem J 113:77–82

    Article  CAS  Google Scholar 

  30. Li FM, Liu JM, Wang XX, Lin LP, Cai WL, Lin X, Zeng YN, Li ZM, Lin SQ (2011) Non-aggregation based label free colorimetric sensor for the detection of Cr (VI) based on selective etching of gold nanorods. Sensors Actuators B Chem 155:817–822

    Article  CAS  Google Scholar 

  31. Chen Z, Zhang Z, Qu C, Pan D, Chen L (2012) Highly sensitive label-free colorimetric sensing of nitritebased on etching of gold nanorods. Analyst 137:5197–5200

    Article  CAS  Google Scholar 

  32. Zhang Z, Chen Z, Qu C, Chen L (2014) Highly sensitive visual detection of copper ions based on the shape-dependent LSPR spectroscopy of gold nanorods. Langmuir 30:3625–3630

  33. KDN VÔ, Kowandy C, Dupont L, Coqueret X (2015) Evidence of chitosan-mediated reduction of Au(III) to Au(0) nanoparticles under electron beam by using OH and e aq scavengers. Chem Commun 51:4017–4020

    Article  Google Scholar 

  34. Nikoobakht B, El-Sayed MA (2003) Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem Mater 15:1957–1962

    Article  CAS  Google Scholar 

  35. Mohamed MB, Ismail KZ, Link S, El-Sayed MA (1998) Thermal reshaping of gold nanorods in micelles. J Phys Chem B 102:9370–9374

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was financially supported by the Korea Institute of Science and Technology (2E26710, 2E26260, and 2E26300). The authors also thank the Small & Medium Business Administration of Korea (2 M34587), and the Korean Ministry of Science, ICT and Future Planning for providing financial support for this research (2 N41940).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kang-Bong Lee.

Ethics declarations

The authors declare that they have no competing interests

Electronic supplementary material

ESM 1

(DOC 806 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, S., Nam, YS., Choi, SH. et al. Highly sensitive photometric determination of cyanide based on selective etching of gold nanorods. Microchim Acta 183, 3035–3041 (2016). https://doi.org/10.1007/s00604-016-1952-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-016-1952-y

Keywords

Navigation