Skip to main content
Log in

A flexible electrochemical micro lab-on-chip: application to the detection of interleukin-10

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We report on a simple method to manufacture an electrochemical micro lab-on-chip (μLoC), for the detection of interleukin-10 (IL-10) cytokine of patients suffering from heart failure (HF). To monitor the critical levels of inflammation, a μLoC containing eight gold microelectrodes based on a polyimide (PI) substrate was fabricated. The microelectrodes were manufactured on PI by a combination of soft lithographical tools. To produce an operational μLoC, a microfluidic system fabricated in polydimethylsiloxane was sealed onto the PI substrate through silane reagent (3-aminopropyl)triethoxysilane. Cyclic voltammetry was applied as the characterization technique for the gold microelectrode surface properties. Finally, electrochemical characterization of the μLoC was determined by electrochemical impedance spectroscopy for the quantification of IL-10. These were detected within the range of 1–15 pg.mL−1. The time and cost of fabrication for this μLoC was very low when compared to those that have been fabricated by conventional lithography.

A fully integrated micro Lab-on-Chip (μLoC) based on flexible and biocompatible polymers for Interleukin-10. detection

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Harink B, Le Gac S, Truckenmüller R, Van Blitterswijk C, Habibovic P (2013) Regeneration-on-a-chip? the perspectives on use of microfluidics in regenerative medicine. Lab Chip 13:3512–3528

    Article  CAS  Google Scholar 

  2. Whitesides GM (2006) Overview the origins and the future of microfluidics. Nature 442:368–373

    Article  CAS  Google Scholar 

  3. Ashraf MW, Tayyaba S, Nitin A (2011) Micro electromechanical systems (MEMS) based microfluidic devices for biomedical applications. Int J Mol Sci 12:3648–3704

    Article  CAS  Google Scholar 

  4. Debus H, Beck-Broichsitter M, Kissel T (2012) Optimized preparation of pDNA/poly(ethylene imine) polyplexes using a microfluidic system. Lab Chip 12(14):2498–2506

    Article  CAS  Google Scholar 

  5. Lemke T, Biancuzzi G, Feth H, Huber J, Goldschmidtböing F, Woias P (2011) Fabrication of normally-closed bidirectional micropumps in silicon–polymer technology featuring photopatternable silicone valve lips. Sensors Actuators A 168:213–222

    Article  CAS  Google Scholar 

  6. Pilarek M., Neubauer P., Marx U. (2011) Biological cardio-micro-pumps for microbioreactors and analytical micro-systems. Sensors Actuators B 156517–526.

  7. Li B, Chen Q, Lee DG, Woolman J, Carman GP (2005) Development of large flow rate, robust, passive micro check valves for compact piezoelectrically actuated pumps. Sensors Actuators A 117:325–330

    Article  CAS  Google Scholar 

  8. Meng J, Loh NH, Fu G, Tor SB, Tay BY (2010) Replication and characterization of 316 L stainless steel micro-mixer by micro powder injection molding. J Alloys Compd 496:293–299

    Article  CAS  Google Scholar 

  9. Lee DS, Choi YH, Chung KH, Shoji S, Jung MY (2009) Micro membrane filters for passive plasma extraction from whole human blood using silicon nitride-based microfilters and plama collection using agarose gels. Procedia Chemistry 1:1511–1514

    Article  CAS  Google Scholar 

  10. Neild A, Ng TW, Sheard GJ, Powers M, Oberti S (2010) Swirl mixing at microfluidic junctions due to low frequency side channel fluidic perturbations. Sensors Actuators B 150:811–818

    Article  CAS  Google Scholar 

  11. Hsieh G-W, Tsai C-H, Lin W-C (2005) Anodic bonding of glass and silicon wafers with an intermediate silicon nitride film and its application to batch fabrication of SPM tip arrays. Microelectron J 36:678–682

    Article  CAS  Google Scholar 

  12. Roy B, Das T, Maiti TK, Chakraborty S (2011) Effect of fluidic transport on the reaction kinetics in lectin microarrays. Anal Chim Acta 701:6–14

    Article  CAS  Google Scholar 

  13. Kuncová-Kallio J., Kallio P.J. (2006) PDMS and its suitability for analytical microfluidic devices. Engineering in Medicine and Biology Society, 2006 EMBS ‘06 28th Annual International Conference of the IEEE: 2486–2489.

  14. Schueller OJA, Brittain ST, Whitesides GM (1999) Fabrication of glassy carbon microstructures by soft lithography. Sensors Actuators A 72:125–139

    Article  CAS  Google Scholar 

  15. Tsao CW, Hromada L, Liu J, Kumar P, Devoe DL (2007) Low temperature bonding of PMMA and COC microfluidic substrates using UV/ozone surface treatment. Lab Chip 7:499–505

    Article  CAS  Google Scholar 

  16. Li L, Yang C, Shi H, Liao W-C, Huang H, Lee LJ, Castro JM, Yi AY (2010) Design and fabrication of an affordable polymer micromixer for medical and biomedical applications. Polym Eng Sci 50(8):1594–1604

    Article  CAS  Google Scholar 

  17. Tang Y, Shi J, Li S, Wang L, Cayre YE, Chen Y (2010) Microfluidic device with integrated microfilter of conical-shaped holes for high efficiency and high purity capture of circulating tumor cells. Sci Report 4:6052

    Google Scholar 

  18. Marlin ND, Smith NW (2005) Separation of biomolecules by μ-high-performance anion-exchange chromatography using a tentacle-like stationary phase. Anal Bioanal Chem 382:493–497

    Article  CAS  Google Scholar 

  19. Abgrall P, Gué A-M (2007) Lab-on-chip technologies: making a microfluidic network and coupling it into a complete microsystem—a review. J Micromech Microeng 17(5):R15

    Article  Google Scholar 

  20. Cheung KC, Renaud P (2006) BioMEMS for medicine: On-chip cell characterization and implantable microelectrodes. Solid State Electron 50(4):551–557

    Article  CAS  Google Scholar 

  21. Lillehoj PB, Huang M-C, Truong N, Ho C-M (2013) Rapid electrochemical detection on a mobile phone. Lab Chip 13(15):2950–2955

    Article  CAS  Google Scholar 

  22. Xia Y, Whitesides GM (1998) Soft Lithography. Angew Chem Int Ed Eng 37:550–575

    Article  CAS  Google Scholar 

  23. Sheffera M, Vivierb V, Mandlera D (2007) Electrochem Commun 9(12):2827–2832

    Article  Google Scholar 

  24. Caruso R, Trunfio S, Milazzo F, Campolo J,D, Maria R, Colombo T, M. P, Cannata A, Russo C, Paino R, Frigerio M, Martinelli L, Parodi O (2010) Early expression of pro- and anti-inflammatory cytokines in left ventricular assist device recipients with multiple organ failure syndrome. ASAIO J 56(4):313–318

    CAS  Google Scholar 

  25. Fernandez JG, Mills CA, Martinez E, Lopez-Bosque MJ, Sisquella X, Errachid A, Samitier J (2008) Micro- and nanostructuring of freestanding, biodegradable, thin sheets of chitosan via soft lithography. J Biomed Materials Res Part A 85(A):242–247

    Article  Google Scholar 

  26. Baraket A, Lee M, Zine N, Sigaud M, Yaakoubi N, Trivella MG, Zabala M, Bausells J, Jaffrezic-Renault N, Errachid A (2013) Diazonium modified gold microelectrodes onto polyimide substrates for impedimetric cytokine detection with an integrated Ag/AgCl reference electrode. Sensors Actuators B Chem 189:165–172

    Article  CAS  Google Scholar 

  27. Lee M, Lopez-Martinez MJ, Baraket A, Zine N, Esteve J, Plaza JA, Jaffrezic-Renault N, Errachid A (2012) Polymer micromixers bonded to thermoplastic films combining soft-lithography with plasma and aptes treatment processes. J Polym Sci A Polym Chem 51:59–70

    Article  Google Scholar 

  28. Randles JEB (1948) Cathode ray polarograph. Trans Faraday Soc 44:327

    Article  CAS  Google Scholar 

  29. Hnaien M, Diouani MF, Helali S, Hafaid I, Hassen WM, Jaffrezic RN, Ghramd A, Abdelghani A (2008) Immobilization of specific antibody on SAM functionalized gold electrode for rabies virus detection by electrochemical impedance spectroscopy. Biochem Eng J 39:443–449

    Article  CAS  Google Scholar 

  30. Tlili A., Ali Jarboui M., Abdelghani A.,. Fathallah D.M, Maaref M. A. (1995) Regeneration-on-a-chip? The perspectives on use of microfluidics in regenerative medicine. Mater Sci Eng C 25:490–495.

    Article  Google Scholar 

  31. Baraket A, Lee M, Zine N, Yaakoubi N, Trivella MG, Zabala M, Bausells J, Jaffrezic- Renault N, Errachid A (2012) Cytokine Detection using Diazonium Modified Gold Microelectrodes Onto Polyimide Substrates with Integrated Ag/AgCl Reference Electrode. Protein Eng 47:1181–1184

    CAS  Google Scholar 

  32. Baraket A., Lee M., Zine N., Yaakoubi N., Trivella M. G., Elaissari A., Sigaud M. (2014) A Flexible Label-Free Biosensor Sensitive and Selective to TNF-a: Application for Chronic Heart Failure. Sensors & Transducers Journal and Magazine (ISSN: 2306–8515, e-ISSN 1726–5479) 27:15–21.

  33. Lee M., Baraket A., Zine N., Zabala M., Campabadal F., Jaffrezic-Renault N., Errachid A. (2014) Impedance Characterization of the Capacitive field-Effect pH-Sensor Based on a thin-Layer Hafnium Oxide Formed by Atomic Layer Deposition. Sensors & Transducers Journal (ISSN: 2306–8515, e-ISSN 1726–5479) 27:233–238.

  34. Lee M, Zine N, Baraket A, Zabala M, Campabadal F, Caruso R, Trivella MG, Jaffrezic-Renault N, Errachid A (2012) A novel biosensor based on hafnium oxide: Application for early stage detection of human interleukin-10. Sensors Actuators B Chem 175:201–207

    Article  CAS  Google Scholar 

  35. Baraket A, Zine N, Lee M, Bausells J, Jaffrezic-Renault N, Bessueille F, Yaakoubi N, Errachid A (2013) Development of a flexible microfluidic system based on a simple and reproducible sealing process between polymers and poly(dimethylsiloxane). Microelectron Eng 111:332–338

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelhamid Errachid.

Ethics declarations

The author(s) declare that they have no competing interests

Electronic supplementary material

ESM 1

(WMV 6076 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baraket, A., Lee, M., Zine, N. et al. A flexible electrochemical micro lab-on-chip: application to the detection of interleukin-10. Microchim Acta 183, 2155–2162 (2016). https://doi.org/10.1007/s00604-016-1847-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-016-1847-y

Keywords

Navigation