Skip to main content
Log in

Impedimetric sensing of humidity and temperature using CeO2–Co3O4 nanoparticles in polymer hosts

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Humidity and temperature sensors were fabricated from a nanocomposite consisting of CeO2-Co3O4 hybrid nanoparticle-silicone adhesive and CeO2-Co3O4 hybrid nanoparticle-polymer adhesive, respectively, to fix the material on a glass supported copper electrode. The impedance of the sensor decreases by a factor of 960 at a working frequency of 100 Hz, and by a factor of 800 at 1 kHz, on increasing relative humidity (RH) from 30 to 90 %. In parallel, the capacitances increase by factors of 567 and 355, respectively, under the same experimental conditions. The effect of temperature in the range from 25 to 70 °C on impedance (again at 100 Hz and 1 kHz) was also studied and found to decrease with increasing temperature. On going from 25 to 70 °C, the impedance measured at 100 Hz and 1 kHz decreases 2.22 and 1.58 times, respectively, in surface type sensors, while in sandwich type sensors this decrease is 3.0 and 2.08 times. The calculated average sensitivity to temperature is −1.02 and −0.8 % °C−1 for the surface type and −1.5 and −1.2 % °C−1 for the sandwich type sensors at frequencies of 100 Hz and 1 kHz, respectively.

A highly sensitive sensor with dual functionality for humidity and temperature has been fabricated by using CeO2-codoped Co3O4 nanoparticles with silicone and polymer adhesive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Chani MTS, Karimov KS, Khalid FA, Moiz SA (2013) Polyaniline based impedance humidity sensors. Solid State Sci 18:78–82

    Article  CAS  Google Scholar 

  2. Chani MTS, Karimov KS, Khan SB, Asiri AM, Saleem M, Bashir MM (2013) Fe2O3–silicone adhesive composite based humidity sensors. Optoelectron Adv Mater Rapid Commun 7:861–865

    CAS  Google Scholar 

  3. Fuke MV, Kanitkar P, Kulkarni M, Kale B, Aiyer R (2010) Effect of particle size variation of Ag nanoparticles in polyaniline composite on humidity sensing. Talanta 81:320–326

    Article  CAS  Google Scholar 

  4. Chani MTS, Karimov KS, Khalid FA, Abbas SZ, Bhatty MB (2013) Orange dye-polyaniline composite based impedance humidity sensors. Chin Phys B 22:10701–010701

    Article  Google Scholar 

  5. Huang JR, Li MQ (2007) A novel conductive humidity sensor based on field ionization from carbon nanotubes. Sensors Actuators A 133:467–471

    Article  CAS  Google Scholar 

  6. Nohria R, Khillan RK, Su Y, Dikshit R, Lvov Y, Varahramyan K (2006) Humidity sensor based on ultrathin polyaniline film deposited using layer-by-layer nano-assembly. Sens Actuators B 114:218–222

    Article  CAS  Google Scholar 

  7. Khan SB, Chani MTS, Karimov KS, Asiri AM, Mehran B, Rana T (2014) Humidity and temperature sensing properties of copper oxide–Si-adhesive nanocomposite. Talanta 120:443–449

    Article  CAS  Google Scholar 

  8. Boylestad RL (2010) Introductory circuit analysis 12th ed (Prentice Hall)

  9. Dally JW, Riley W, McConnell KG (1993) Instrumentation for engineering measurements. Wiley, New York

    Google Scholar 

  10. Omar MA (2002) Elementary solid state physics: principles and applications. Pearson Education (Singapore) Pt. Ltd., Indian branch, Delhi

    Google Scholar 

  11. Faisal M, Khan SB, Rahman MM, Jamal A, Asiri AM, Abdullah MM (2011) Smart chemical sensor and active photo-catalyst for environmental pollutants. Chem Eng J 173:178–184

    Article  CAS  Google Scholar 

  12. Jamal A, Rahman MM, Khan SB, Faisal M, Akhtar K, Rub MA et al (2012) Cobalt doped antimony oxide nano-particles based chemical sensor and photo-catalyst for environmental pollutants. Appl Surf Sci 261:52–58

    Article  CAS  Google Scholar 

  13. Khan SB, Rahman MM, Asiri AM, Marwani HM, Bawaked SM, Alamry KA (2013) Co3O4 co-doped TiO2 nanoparticles as a selective marker of lead in aqueous solution. New J Chem 37:2888–2893

    Article  CAS  Google Scholar 

  14. de Lacy Costello BPJ, Ewen RJ, Ratcliffe NM, Sivanand PS (2003) Thick film organic vapour sensors based on binary mixtures of metal oxides. Sensors Actuators B 92:159–166

    Article  Google Scholar 

  15. Yue X-J, Hong T-S, Xu X, Li Z (2011) High-performance humidity sensors based on double-layer ZnO-TiO 2 nanofibers via electrospinning. Chin Phys Lett 28:090701

    Article  Google Scholar 

  16. Srivastava R, Yadav BC (2012) Nanaostructured ZnO, ZnO-TiO2 and ZnO-Nb2O5 as solid state humidity sensor. Adv Mater Lett 3:197–203

    Article  CAS  Google Scholar 

  17. Nagaraju SC, Roy AS, Kumar JBP, Anilkumar KR, Ramagopal G (2014) Humidity sensing properties of surface modified polyaniline metal oxide composites. J Eng 2014:8

    Article  Google Scholar 

  18. Khan SB, Faisal M, Rahman MM, Jamal A (2011) Exploration of CeO2 nanoparticles as a chemi-sensor and photo-catalyst for environmental applications. Sci Total Environ 409:2987–2992

    Article  CAS  Google Scholar 

  19. Wang Y, Zhou T, Jiang K, Da P, Peng Z, Tang J et al (2014) Reduced mesoporous Co3O4 nanowires as efficient water oxidation electrocatalysts and supercapacitor electrodes. Adv Energy Mater 4:1400696

    Google Scholar 

  20. Ma TY, Dai S, Jaroniec M, Qiao SZ (2014) Synthesis of highly active and stable spinel-type oxygen evolution electrocatalysts by a rapid inorganic self-templating method. Chem Eur J 20:12669–12676

    Article  CAS  Google Scholar 

  21. Asif SAB, Khan SB, Asiri AM (2014) Efficient solar photocatalyst based on cobalt oxide/iron oxide composite nanofibers for the detoxification of organic pollutants. Nanoscale Res Lett 9:510

    Article  Google Scholar 

  22. Fu XQ, Wang C, Yu HC, Wang YG, Wang TH (2007) Fast humidity sensors based on CeO 2 nanowires. Nanotechnology 18:145503

    Article  Google Scholar 

  23. Khadse VR, Thakur S, Patil KR, Patil P (2014) Humidity-sensing studies of cerium oxide nanoparticles synthesized by non-isothermal precipitation. Sens Actuators B 203:229–238

    Article  CAS  Google Scholar 

  24. Zuwei Z, Chenguo H, Yufeng X, Rusen Y, Zhong Lin W (2007) Synthesis of Ba-doped CeO 2 nanowires and their application as humidity sensors. Nanotechnology 18:465504

    Article  Google Scholar 

  25. Chani MTS, Asiri AM, Karimov KS, Niaz AK, Khan SB, Alamry KA (2013) Aluminium phthalocyanine chloride thin films for temperature sensing. Chin Phys B 22:118101–118105

    Article  Google Scholar 

  26. Boguslavsky SN, Vannikov VV (1968) Organic semiconductors. V.A. Kargin, Nauka, Moscow

    Google Scholar 

  27. Neamen DA (1992) Semiconductor physics and devices: basic principles. Irwin, Boston

    Google Scholar 

  28. Malley JO (1992) Theory and problems of basic circuit analysis, 2nd edn. McGraw-Hill, New York

    Google Scholar 

  29. Bottger H, Bryksin VV (1985) Hopping conduction in solids. VCH, Deerfield Beach

    Google Scholar 

  30. Brabec C, Dyakonov JPaNS V (2003) Organic photovoltaics: concepts and realization. Springer, (Berlin

    Book  Google Scholar 

  31. Steele JJ, Taschuk MT, Brett MJ (2008) Nanostructured metal oxide thin films for humidity sensors. IEEE Sens J 8:1422–1429

    Article  CAS  Google Scholar 

  32. Varghese OK, Grimes CA (2003) Metal oxide nanoarchitectures for environmental sensing. J Nanosci Nanotechnol 3:277–293

    Article  CAS  Google Scholar 

  33. Wang L, Deng J, Lou Z, Zhang T (2014) Cross-linked p-type Co3O4 octahedral nanoparticles in 1D n-type TiO2 nanofibers for high-performance sensing devices. J Mater Chem A 2:10022–10028

    Article  CAS  Google Scholar 

  34. Yadav BC, Yadav RC, Singh S, Dwivedi PK, Ryu H, Kang S (2013) Nanostructured cobalt oxide and cobalt titanate thin films as optical humidity sensor: a new approach. Opt Laser Technol 49:68–74

    Article  CAS  Google Scholar 

  35. Zhang C, Sadek AZ, Breedon M, Ippolito SJ, Wlodarski W, Truman T, et al (2008) Conductometric sensor based on nanostructured titanium oxide thin film deposited on polyimide substrate with dissimilar metallic electrodes. Nanoscience and Nanotechnology, 2008. ICONN 2008. International Conference on. p. 94–96

Download references

Acknowledgments

This project was funded by the Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, Jeddah, under grant no. (CEAMR-SG-2-436).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sher Bahadar Khan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, S.B., Karimov, K.S., Chani, M.T.S. et al. Impedimetric sensing of humidity and temperature using CeO2–Co3O4 nanoparticles in polymer hosts. Microchim Acta 182, 2019–2026 (2015). https://doi.org/10.1007/s00604-015-1529-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-015-1529-1

Keywords

Navigation