Skip to main content
Log in

A single glass conical nanopore channel modified with 6-carboxymethyl-chitosan to study the binding of bovine serum albumin due to hydrophobic and hydrophilic interactions

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A single glass conical nanopore functionalized with 6-carboxymethyl-chitosan (CMC) was applied to study the binding of bovine serum albumin (BSA) because of both hydrophobic and hydrophilic interactions. The interactions between the CMC-modified nanopore and BSA within the confined space were studied via the ionic current passing the nanopore by measuring the current–voltage (I–V) curves in 10 mM KCl solution. The hydrophilicity of CMC was varied by adjusting the pH values. Significant changes in the ionic current were observed following attachment of BSA. The relative contributions of hydrophobic and hydrophilic interactions depend on whether solutions are acidic or basic. A linear relationship exists between the concentration of BSA (up to 500 nM) and the ionic current at pH 12. This suggests a potential application of the method for sensing proteins via sweep voltammetry on a nanoscale. The nanodevice described here can be made reversible by ultrasonication to remove the attached BSA molecules.

A single glass conical nanopore functionalized with 6-carboxymethyl-chitosan (CMC) was used to study the hydrophobic/hydrophilic association with BSA molecules both in acid and basic conditions by using sweep voltammetry. A linear relationship between the concentration of additional BSA and the ionic current of the nanopore at pH 12 was achieved, which suggests a promising application in biosensing of proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Gyurcsanyi RE (2008) Chemically-modified nanopores for sensing. Trac-trend Anal Chem 27:627–639

    Article  CAS  Google Scholar 

  2. de la Escosura-Muniz A, Merkoci A (2012) Nanochannels preparation and application in biosensing. ACS Nano 6:7556–7583

    Article  Google Scholar 

  3. Sinha PM, Valco G, Sharma S, Liu XW, Ferrari M (2004) Nanoengineered device for drug delivery application. Nanotechnology 15:S585–S589

    Article  CAS  Google Scholar 

  4. Guo ZJ, Wang JH, Wang EK (2012) Selective discrimination of small hydrophobic biomolecules based on ion-current rectification in conically shaped nanochannel. Talanta 89:253–257

    Article  CAS  Google Scholar 

  5. Hou X, Guo W, Jiang L (2011) Biomimetic smart nanopores and nanochannels. Chem Soc Rev 40:2385–2401

    Article  CAS  Google Scholar 

  6. Ying YL, Li DW, Liu Y, Dey SK, Kraatz HB, Long YT (2012) Recognizing the translocation signals of individual peptide-oligonucleotide conjugates using an alpha-hemolysin nanopore. Chem Commun 48:8784–8786

    Article  CAS  Google Scholar 

  7. Wang HY, Ying YL, Li Y, Kraatz HB, Long YT (2011) Nanopore analysis of beta-amyloid peptide aggregation transition induced by small molecules. Anal Chem 83:1746–1752

    Article  CAS  Google Scholar 

  8. Ali M, Bayer V, Schiedt B, Neumann R, Ensinger W (2008) Fabrication and functionalization of single asymmetric nanochannels for electrostatic/hydrophobic association of protein molecules. Nanotechnology 19(48):485711

    Article  Google Scholar 

  9. Siwy ZS (2006) Ion-current rectification in nanopores and nanotubes with broken symmetry. Adv Funct Mater 16:735–746

    Article  CAS  Google Scholar 

  10. Ali M, Schiedt B, Neumann R, Ensinger W (2010) Biosensing with functionalized single asymmetric polymer nanochannels. Macromol Biosci 10:28–32

    Article  CAS  Google Scholar 

  11. Ali M, Nasir S, Nguyen QH, Sahoo JK, Tahir MN, Tremel W, Ensinger W (2011) Metal ion affinity-based biomolecular recognition and conjugation inside synthetic polymer nanopores modified with iron-terpyridine complexes. J Am Chem Soc 133:17307–17314

    Article  CAS  Google Scholar 

  12. Tahir MN, Ali M, Andre R, Muller WEG, Schroder HC, Tremel W, Ensinger W (2013) Silicatein conjugation inside nanoconfined geometries through immobilized NTA-Ni(II) chelates. Chem Commun 49:2210–2212

    Article  CAS  Google Scholar 

  13. Zhao S, Zheng Y-B, Cai S-L, Weng Y-H, Cao S-H, Yang J-L, Li Y-Q (2013) Sugar-stimulated robust nanodevice: 4-Carboxyphenylboronic acid modified single glass conical nanopores. Electrochem Commun 36:71–74

    Article  CAS  Google Scholar 

  14. Wang J, Martin CR (2008) A new drug-sensing paradigm based on ion-current rectification in a conically shaped nanopore. Nanomedicine 3:13–20

    Article  CAS  Google Scholar 

  15. Zhang LX, Cao XH, Zheng YB, Li YQ (2010) Covalent modification of single glass conical nanopore channel with 6-carboxymethyl-chitosan for pH modulated ion current rectification. Electrochem Commun 12:1249–1252

    Article  CAS  Google Scholar 

  16. Zhang LX, Cai SL, Zheng YB, Cao XH, Li YQ (2011) Smart homopolymer modification to single glass conical nanopore channels: dual-stimuli-actuated highly efficient ion gating. Adv Funct Mater 21:2103–2107

    Article  CAS  Google Scholar 

  17. Ali M, Neumann R, Ensinger W (2010) Sequence-specific recognition of DNA oligomer using Peptide Nucleic Acid (PNA)-modified synthetic ion channels: PNA/DNA hybridization in nanoconfined environment. ACS Nano 4:7267–7274

    Article  CAS  Google Scholar 

  18. Kohli P, Harrell CC, Cao ZH, Gasparac R, Tan WH, Martin CR (2004) DNA-functionalized nanotube membranes with single-base mismatch selectivity. Science 305:984–986

    Article  CAS  Google Scholar 

  19. Fu YQ, Tokuhisa H, Baker LA (2009) Nanopore DNA sensors based on dendrimer-modified nanopipettes. Chem Commun 32:4877–4879

    Article  Google Scholar 

  20. Siwy Z, Trofin L, Kohli P, Baker LA, Trautmann C, Martin CR (2005) Protein biosensors based on biofunctionalized conical gold nanotubes. J Am Chem Soc 127:5000–5001

    Article  CAS  Google Scholar 

  21. Gao LJ, Li P, Zhang YQ, Xiao K, Ma J, Xie GH, Hou GL, Zhang Z, Wen LP, Jiang L (2015) A Bio-inspired, sensitive, and selective ionic gate driven by silver (I) ions. Small 11:543–547

    Article  CAS  Google Scholar 

  22. Shang Y, Zhang Y, Li P, Lai J, Kong X-Y, Liu W, Xiao K, Xie G, Tian Y, Wen L, Jiang L (2015) DNAzyme tunable lead(II) gating based on ion-track etched conical nanochannels. Chem Commun 51:5979–5981

    Article  CAS  Google Scholar 

  23. Ali M, Tahir MN, Siwy Z, Neumann R, Tremel W, Ensinger W (2011) Hydrogen peroxide sensing with horseradish peroxidase-modified polymer single conical nanochannels. Anal Chem 83:1673–1680

    Article  CAS  Google Scholar 

  24. Nguyen QH, Ali M, Bayer V, Neumann R, Ensinger W (2010) Charge-selective transport of organic and protein analytes through synthetic nanochannels. Nanotechnology 21(36):365701

    Article  Google Scholar 

  25. Ali M, Yameen B, Neumann R, Ensinger W, Knoll W, Azzaroni O (2008) Biosensing and supramolecular bioconjugation in single conical polymer nanochannels. Facile incorporation of biorecognition elements into nanoconfined geometries. J Am Chem Soc 130:16351–16357

    Article  CAS  Google Scholar 

  26. Sexton LT, Mukaibo H, Katira P, Hess H, Sherrill SA, Horne LP, Martin CR (2010) An adsorption-based model for pulse duration in resistive-pulse protein sensing. J Am Chem Soc 132:6755–6763

    Article  CAS  Google Scholar 

  27. Sexton LT, Horne LP, Sherrill SA, Bishop GW, Baker LA, Martin CR (2007) Resistive-pulse studies of proteins and protein/antibody complexes using a conical nanotube sensor. J Am Chem Soc 129:13144–13152

    Article  CAS  Google Scholar 

  28. Actis P, Rogers A, Nivala J, Vilozny B, Seger RA, Jejelowo O, Pourmand N (2011) Reversible thrombin detection by aptamer functionalized STING sensors. Biosens Bioelectron 26:4503–4507

    Article  CAS  Google Scholar 

  29. Shang J, Shao ZZ, Chen X (2008) Electrical behavior of a natural polyelectrolyte hydrogel: Chitosan/carboxymethylcellulose hydrogel. Biomacromolecules 9:1208–1213

    Article  CAS  Google Scholar 

  30. Yang LR, Guo C, Chen S, Wang F, Wang J, An ZT, Liu CZ, Liu HZ (2009) pH-sensitive magnetic ion exchanger for protein separation. Ind Eng Chem Res 48:944–950

    Article  CAS  Google Scholar 

  31. Zhang B, Galusha J, Shiozawa PG, Wang GL, Bergren AJ, Jones RM, White RJ, Ervin EN, Cauley CC, White HS (2007) Bench-top method for fabricating glass-sealed nanodisk electrodes, glass nanopore electrodes, and glass nanopore membranes of controlled size. Anal Chem 79:4778–4787

    Article  CAS  Google Scholar 

  32. Cao X-L, Li H-W, Yue Y, Wu Y (2013) pH-Induced conformational changes of BSA in fluorescent AuNCs at BSA and its effects on NCs emission. Vib Spectrosc 65:186–192

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful for the financial support from the National Natural Science Foundation of China (Grant nos. 21375111, 21127005 and 20975084), the 973 Program of China (2013CB933703), and the Funds of the Ministry of Education of China (Grant no. 20110121110011, PCSIRT IRT13036).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yao-Qun Li.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 5819 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, SL., Zhang, LX., Zhang, K. et al. A single glass conical nanopore channel modified with 6-carboxymethyl-chitosan to study the binding of bovine serum albumin due to hydrophobic and hydrophilic interactions. Microchim Acta 183, 981–986 (2016). https://doi.org/10.1007/s00604-015-1527-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-015-1527-3

Keywords

Navigation