Skip to main content
Log in

Solid phase headspace microextraction of tricyclic antidepressants using a directly prepared nanocomposite consisting of graphene, CTAB and polyaniline

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We report on the direct electrochemical preparation of a nanocomposite composed of graphene, cetyl trimethylammonium bromide (CTAB), and polyaniline, and its application to headspace solid-phase microextraction (HS-SPME) of the tricyclic antidepressant drugs (TCAs) imipramine, desipramine and clomipramine. The new nanocomposite coating offers good mechanical and thermal stability and high extraction efficiency due to its large specific surface. The SPME conditions such as temperature, concentration of NaOH and extraction time were optimized with the aid of Box-Behnken design through response surface methodology. The TCAs were thermally desorbed and analyzed by GC. The limits of detections range from 0.10 to 0.35 ng mL−1, and the calibration plots are linear within the 0.30–400 ng mL−1 concentration range. The method was successfully applied to the extraction and determination of TCAs in plasma, urine, milk and hair samples.

We report on the direct electrochemical preparation of a nanocomposite composed of graphene, cetyl trimethylammonium bromide and polyaniline, and its application to headspace solid-phase microextraction of the tricyclic antidepressant drugs. The new nanocomposite coating offers good mechanical and thermal stability and high extraction efficiency due to its large specific surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Carson VB (2000) Mental health nursing: The nurse-patient journey. Saunders

  2. Dart RC (2004) Medical toxicology, 3rd edn. Lippincott, Williams & Wilkins, Philadelphia

    Google Scholar 

  3. Paterson S, Cordero R, Burlinson S (2004) Screening and semi-quantitative analysis of post mortem blood for basic drugs using gas chromatography/ion trap mass spectrometry. J Chromatogr B 813:323. doi:10.1016/j.jchromb.2004.10.036

    Article  CAS  Google Scholar 

  4. Kollroser M, Schober C (2002) Simultaneous determination of seven tricyclic antidepressant drugs in human plasma by direct-injection HPLC-APCI-MS-MS with an Ion trap detector. Ther Drug Monit 24:537

    Article  CAS  Google Scholar 

  5. Acedo-Valenzuela M-I, Galeano-Díaz T, Mora-Díez N, Silva-Rodríguez A (2005) Response surface methodology for the optimisation of flow-injection analysis with in situ solvent extraction and fluorimetric assay of tricyclic antidepressants. Talanta 66:952. doi:10.1016/j.talanta.2004.12.044

    Article  CAS  Google Scholar 

  6. de la Torre R, Ortuño J, Pascual JA, González S, Ballesta J (1998) Quantitative determination of tricyclic antidepressants and their metabolites in plasma by solid-phase extraction (bond-elut TCA) and separation by capillary gas chromatography with nitrogen-phosphorous detection. Ther Drug Monit 20:340

    Article  Google Scholar 

  7. Ito R, Ushiro M, Takahashi Y, Saito K, Ookubo T, Iwasaki Y, Nakazawa H (2011) Improvement and validation the method using dispersive liquid–liquid microextraction with < i > in situ</i > derivatization followed by gas chromatography–mass spectrometry for determination of tricyclic antidepressants in human urine samples. J Chromatogr B 879:3714

    Article  CAS  Google Scholar 

  8. Alves C, Santos-Neto AJ, Fernandes C, Rodrigues JC, Lanças FM (2007) Analysis of tricyclic antidepressant drugs in plasma by means of solid-phase microextraction-liquid chromatography-mass spectrometry. J Mass Spectrom 42:1342. doi:10.1002/jms.1288

    Article  CAS  Google Scholar 

  9. Arthur CL, Pawliszyn J (1990) Solid phase microextraction with thermal desorption using fused silica optical fibers. Anal Chem 62:2145. doi:10.1021/ac00218a019

    Article  CAS  Google Scholar 

  10. Pawliszyn J (1997) Solid phase microextraction: theory and practice, vol 61. Wiley-Vch, New York

    Google Scholar 

  11. Minjia H, Chao T, Qunfang Z, Guibin J (2004) Preparation of polyaniline coating on a stainless-steel wire using electroplating and its application to the determination of six aromatic amines using headspace solid-phase microextraction. J Chromatogr A 1048:257. doi:10.1016/j.chroma.2004.07.059

    Article  Google Scholar 

  12. Li X, Zhong M, Xu S, Sun C (2006) Determination of phthalates in water samples using polyaniline-based solid-phase microextraction coupled with gas chromatography. J Chromatogr A 1135:101. doi:10.1016/j.chroma.2006.09.051

    Article  CAS  Google Scholar 

  13. Bagheri H, Piri-Moghadam H, Naderi M (2012) Towards greater mechanical, thermal and chemical stability in solid-phase microextraction. TrAC Trend Anal Chem 34:126. doi:10.1016/j.trac.2011.11.004

    Article  CAS  Google Scholar 

  14. Yan J, Wei T, Fan Z, Qian W, Zhang M, Shen X, Wei F (2010) Preparation of graphene nanosheet/carbon nanotube/polyaniline composite as electrode material for supercapacitors. J Power Sources 195:3041. doi:10.1016/j.jpowsour.2009.11.028

    Article  CAS  Google Scholar 

  15. Mohammadi A, Ameli A, Alizadeh N (2009) Headspace solid-phase microextraction using a dodecylsulfate-doped polypyrrole film coupled to ion mobility spectrometry for the simultaneous determination of atrazine and ametryn in soil and water samples. Talanta 78:1107. doi:10.1016/j.talanta.2009.01.025

    Article  CAS  Google Scholar 

  16. Rastkari N, Ahmadkhaniha R, Samadi N, Shafiee A, Yunesian M (2010) Single-walled carbon nanotubes as solid-phase microextraction adsorbent for the determination of low-level concentrations of butyltin compounds in seawater. Anal Chim Acta 662:90. doi:10.1016/j.aca.2009.12.035

    Article  CAS  Google Scholar 

  17. Du W, Zhao F, Zeng B (2009) Novel multiwalled carbon nanotubes–polyaniline composite film coated platinum wire for headspace solid-phase microextraction and gas chromatographic determination of phenolic compounds. J Chromatogr A 1216:3751. doi:10.1016/j.chroma.2009.03.013

    Article  CAS  Google Scholar 

  18. Xiao CH, Liu ZL, Wang ZY, Wu CY, Han HM (2000) Use of polymeric fullerene as a new coating for solid-phase microextraction. Chromatographia 52:803. doi:10.1007/bf02491008

    Article  CAS  Google Scholar 

  19. Chen J, Zou J, Zeng J, Song X, Ji J, Wang Y, Ha J, Chen X (2010) Preparation and evaluation of graphene-coated solid-phase microextraction fiber. Anal Chim Acta 678:44. doi:10.1016/j.aca.2010.08.008

    Article  CAS  Google Scholar 

  20. Li X, Wang Y, Yang X, Chen J, Fu H, Cheng T (2012) Conducting polymers in environmental analysis. TrAC Trend Anal Chem 39:163. doi:10.1016/j.trac.2012.06.003

    Article  CAS  Google Scholar 

  21. Ansari MO, Khan MM, Ansari SA, Amal I, Lee J, Cho MH (2014) pTSA doped conducting graphene/polyaniline nanocomposite fibers: thermoelectric behavior and electrode analysis. Chem Eng J 242:155. doi:10.1016/j.cej.2013.12.033

    Article  CAS  Google Scholar 

  22. Li X, Chen J, Du L (2007) Analysis of chloro- and nitrobenzenes in water by a simple polyaniline-based solid-phase microextraction coupled with gas chromatography. J Chromatogr A 1140:21. doi:10.1016/j.chroma.2006.11.044

    Article  CAS  Google Scholar 

  23. Mehdinia A, Khani H, Mozaffari S (2014) Fibers coated with a graphene-polyaniline nanocomposite for the headspace solid-phase microextraction of organochlorine pesticides from seawater samples. Microchim Acta 181:89. doi:10.1007/s00604-013-1071-y

    Article  CAS  Google Scholar 

  24. Pumera M (2010) Graphene-based nanomaterials and their electrochemistry. Chem Soc Rev 39:4146

    Article  CAS  Google Scholar 

  25. Jeong I-J, Kim K-J (2009) An interactive desirability function method to multiresponse optimization. Eur J Oper Res 195:412. doi:10.1016/j.ejor.2008.02.018

    Article  Google Scholar 

  26. Joglekar AM, May AT (1987) Product excellence through design of experiments. Cereal Foods World 32:857

    Google Scholar 

  27. Hosseiny Davarani SS, Nojavan S, Asadi R, Banitaba MH (2013) Electro-assisted solid-phase microextraction based on poly(3,4-ethylenedioxythiophen) combined with GC for the quantification of tricyclic antidepressants. J Sep Sci 36:2315. doi:10.1002/jssc.201300099

    Article  CAS  Google Scholar 

  28. Ulrich S, Martens J (1997) Solid-phase microextraction with capillary gas-liquid chromatography and nitrogen-phosphorus selective detection for the assay of antidepressant drugs in human plasma. J Chromatogr B Biomed Sci Appl 696:217. doi:10.1016/S0378-4347(97)00249-1

    Article  CAS  Google Scholar 

  29. Alves C, Fernandes C, dos Santos J, Neto A, Rodrigues JC, Costa Queiroz ME, Lanças FM (2006) Optimization of the SPME parameters and its online coupling with HPLC for the analysis of tricyclic antidepressants in plasma samples. J Chromatogr Sci 44:340. doi:10.1093/chromsci/44.6.340

    Article  CAS  Google Scholar 

  30. Jinno K, Kawazoe M, Saito Y, Takeichi T, Hayashida M (2001) Sample preparation with fiber-in-tube solid-phase microextraction for capillary electrophoretic separation of tricyclic antidepressant drugs in human urine. Electrophoresis 22:3785. doi:10.1002/1522-2683(200109)22:17<3785::aid-elps3785>3.0.co;2-u

    Article  CAS  Google Scholar 

  31. Bagheri H, Babanezhad Mir AE (2005) An electropolymerized aniline-based fiber coating for solid phase microextraction of phenols from water. Anal Chim Acta 532:89. doi:10.1016/j.aca.2004.10.040

    Article  CAS  Google Scholar 

  32. Ponnusamy VK, Jen J-F (2011) A novel graphene nanosheets coated stainless steel fiber for microwave assisted headspace solid phase microextraction of organochlorine pesticides in aqueous samples followed by gas chromatography with electron capture detection. J Chromatogr A 1218:6861. doi:10.1016/j.chroma.2011.08.019

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Homeira Ebrahimzadeh.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 663 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abedi, H., Ebrahimzadeh, H. & Ghasemi, J.B. Solid phase headspace microextraction of tricyclic antidepressants using a directly prepared nanocomposite consisting of graphene, CTAB and polyaniline. Microchim Acta 182, 633–641 (2015). https://doi.org/10.1007/s00604-014-1367-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-014-1367-6

Keywords

Navigation