Skip to main content
Log in

Aptasensor for adenosine triphosphate based on electrode–supported lipid bilayer membrane

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We have developed an aptasensor for adenosine triphosphate (ATP) based on an electrode-supported lipid bilayer membrane. The assay is based on a conformational change that is induced after binding the target which modulates the electron transfer rate in the conductive path. The method is highly sensitive, stable, and repeatable. The detection limit for ATP is 50 nM, and the dynamic range extends to 3.2 μM, which covers the concentration range of ATP in cell lysates (from 0.1 to 1 μM). The method also holds promise in that it may be transferred to submicro- or nano-scale electrodes so to enable intracellular monitoring of ATP.

An aptasensor for adenosine triphosphate based on an electrode-supported lipid bilayer membrane in principle of target-binding induced conformational change to modulate the electron transfer rate in the conductive path.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Mueller P, Rudin DO, Tien HT, Wescott WC (1962) Reconstitution of cell membrane structure in vitro and its transformation into an excitable system. Nature 194:979

    Article  CAS  Google Scholar 

  2. Knoll W, Koper I, Naumann R, Sinner EK (2008) Tethered bimolecular lipid membranes—A novel model membrane platform. Electrochim Acta 53:6680

    Article  CAS  Google Scholar 

  3. Castellana ET, Cremer PS (2006) Solid supported lipid bilayer: from biophysical studies to sensor design. Surf Sci Rep 61:429

    Article  CAS  Google Scholar 

  4. Bokoch MP, Devadoss A, Palencsar MS, Burgess JD (2004) Steady-state oxidation of cholesterol catalyzed by cholesterol oxidase in lipid bilayer membranes on platinum electrodes. Anal Chim Acta 519:47

    Article  CAS  Google Scholar 

  5. Jiang D, Devadoss A, Palenscar MS (2007) Direct electrochemical evaluation of plasma membrane cholesterol in live mammalian cells. J Am Chem Soc 129:11352

    Article  CAS  Google Scholar 

  6. Plant AL (1993) Self-assembled phospholipid/alkanethiol biomimetic bilayers on gold. Langmuir 9:2764

    Article  CAS  Google Scholar 

  7. Plant AL, Gueguetchkeri M, Yap W (1994) Supported phospholipid/alkanethiol biomimetic membranes: insulating properties. Biophys J 67:1126

    Article  CAS  Google Scholar 

  8. Plant AL, Brighamburke M, Petrella EC (1995) Phospholipid/alkanethiol bilayers for cell-surface receptor studies by Surface Plasmon Resonance. Anal Biochem 226:342

    Article  CAS  Google Scholar 

  9. Plant AL (1999) Supported hybrid bilayer membranes as rugged cell membrane mimics. Langmuir 15:5128

    Article  CAS  Google Scholar 

  10. Zwang TJ, Fletcher WR, Lane TJ, Johal MS (2010) Quantification of the layer of hydration of a supported lipid bilayer. Langmuir 26:4598

    Article  CAS  Google Scholar 

  11. Hartshorn CM, Jewett CM, Brozik JA (2010) Molecular effects of a Nanocrystalline quartz support upon planar lipid bilayers. Langmuir 26:2609

    Article  CAS  Google Scholar 

  12. Spurlin TA, Gewirth AA (2007) Charge dependence of a Nanoscale Supercrystal phase in a supported lipid bilayer. J Am Chem Soc 129:11906

    Article  CAS  Google Scholar 

  13. Zhang L, Granick S (2006) Dynamical heterogeneity in supported lipid bilayers. MRS Bull 31:527

    Article  CAS  Google Scholar 

  14. Lee KS, Won MS, Noh HB, Shim YB (2010) Triggering the redox reaction of cytochrome c on a biomimetic layer and elimination of interferences for NADH detection. Biomaterials 31:7827

    Article  CAS  Google Scholar 

  15. Ma W, Li DW, Sutherland TC, Li Y, Long Y, Chen H (2011) Reversible redox of NADH and NAD+ at a hybrid lipid bilayer membrane using ubiquinone. J Am Chem Soc 133:12366

    Article  CAS  Google Scholar 

  16. Ma W, Ying YL, Qin LX, Gu Z, Zhou H, Li DW, Sutherland TC, Chen Y, Long Y (2013) Investigating electron-transfer processes using a biomimetic hybrid bilayer membrane system. Nat Protoc 8:439

    Article  CAS  Google Scholar 

  17. Christian AE, Haynes MP, Phillips MC, Rothblat GH (1997) Use of cyclodextrins for manipulating cellular cholesterol content. J Lipid Res 38:2264

    CAS  Google Scholar 

  18. Knowles JR (1980) Enzyme-catalyzed phosphoryl transfer reactions. Annu Rev Biochem 49:877

    Article  CAS  Google Scholar 

  19. Eckford PDW, Sharom FJ (2009) ABC efflux pump-based resistance to chemotherapy. Chem Rev 109:2989

    Article  CAS  Google Scholar 

  20. Ashcroft FM, Gribble FM (1999) ATP-sensitive K+ channels and insulin secretion: their role in health and disease. Diabetologia 42:903

    Article  CAS  Google Scholar 

  21. Shen X, Mizuguchi G, Hamiche A, Wu C (2000) A chromatin remodelling complex involved in transcription and DNA processing. Nature 406:541

    Article  CAS  Google Scholar 

  22. Bush KT, Keller SH, Nigam SK (2000) Genesis and reversal of the ischemic phenotype in epithelial cells. J Clin Invest 106:621

    Article  CAS  Google Scholar 

  23. Holmsen H, Storm E, James DH (1972) Determination of ATP and ADP in blood platelets: a modification of the firefly luciferase assay for plasma. Anal Biochem 46:489

    Article  CAS  Google Scholar 

  24. Zuo X, Song S, Zhang J, Pan D, Wang L (2007) A target-responsive electrochemical aptamer switch (TREAS) for reagentless detection of nanomolar ATP. J Am Chem Soc 129:1042

    Article  CAS  Google Scholar 

  25. Olson F, Hunt CA, Szoka FC, Vail WJ, Papahadjopoulos D (1979) Preparation of liposomes of defined size distribution by extrusion through polycarbonate membrane. BBA Biomembr 557:9

    Article  CAS  Google Scholar 

  26. Steel AB, Herne TM, Tarlov MJ (1998) Electrochemical quantitation of DNA immobilized on gold. Anal Chem 70:4670

    Article  CAS  Google Scholar 

  27. Erdem A, Kerman K, Meric B, Ozsoz M (2001) Methylene blue as a novel electrochemical hybridization indicator. Electroanal 13:219

    Article  CAS  Google Scholar 

  28. Ma C, Chen H, Han R, He H, Zeng W (2012) Fluorescence detection of adenosine triphosphate using smart probe. Anal Biochem 429:8

    Article  CAS  Google Scholar 

  29. Zhao M, Liao L, Wu M, Lin Y, Xiao X, Nie C (2012) Double-receptor sandwich supramolecule sensing method for the determination of ATP based on uranyl-salophen complex and aptamer. Biosens Bioelectron 34:106

    Article  CAS  Google Scholar 

  30. Jie G, Yuan J, Zhang J (2012) Quantum dots-based multifunctional dendritic superstructure for amplified electrochemiluminescence detection of ATP. Biosens Bioelectron 31:69

    Article  CAS  Google Scholar 

  31. Zhang H, Han Y, Guo Y, Dong C (2012) Porphyrin functionalized graphene nanosheets-based electrochemical aptasensor for label-free ATP detection. J Mater Chem 22:23900

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Project of the National Science Foundation of People’s Republic of China (21275100), Shanghai Leading Academic Discipline Project (S30406) and Key Laboratory of Resource Chemistry of Ministry of Education.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shasheng Huang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 246 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, P., Xia, Y., Yang, L. et al. Aptasensor for adenosine triphosphate based on electrode–supported lipid bilayer membrane. Microchim Acta 181, 205–212 (2014). https://doi.org/10.1007/s00604-013-1100-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-013-1100-x

Keywords

Navigation