Skip to main content
Log in

Modeling a Shallow Rock Tunnel Using Terrestrial Laser Scanning and Discrete Fracture Networks

  • Original Paper
  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

Abstract

Discontinuity mapping and analysis are extremely important for modeling shallow tunnels constructed in fractured rock masses. However, the limited exposure and variability of rock face orientation in tunnels must be taken into account. In this paper, an automatic method is proposed to generate discrete fracture networks (DFNs) using terrestrial laser scanner (TLS) geological mapping and to continuously calculate the volumetric intensities (P 32) along a tunnel. The number of fractures intersecting rectangular sampling planes with different orientations, fitted in tunnel sections of finite lengths, is used as the program termination criteria to create multiple DFNs and to calculate the mean P 32. All traces and orientations from three discontinuity sets of the Monte Seco tunnel (Vitória Minas Railway) were mapped and the present method applied to obtain the continuous variation in P 32 along the tunnel. A practical approach to creating single and continuous DFNs (for each discontinuity set), considering the P 32 variations, is also presented, and the results are validated by comparing the trace intensities (P 21) from the TLS mapping and DFNs generated. Three examples of 3DEC block models generated from different sections of the tunnel are shown, including the ground surface and the bedrock topographies. The results indicate that the proposed method is a practical and powerful tool for modeling fractured rock masses of uncovered tunnels. It is also promising for application during tunnel construction when TLS mapping is a daily task (for as-built tunnel controls), and the complete geological mapping (traces and orientations) is available.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Abbreviations

\(P_{32}\) :

Volumetric intensity

\(P_{32}^{i}\) :

Volumetric intensity of the ith tunnel position

\(P_{32}^{t}\) :

Volumetric intensity of a finite section of the tunnel

\(Er(i)\) :

Volumetric intensity error

\(P_{21}\) :

Trace intensity

\(C_{21}\) :

Constant of proportionality between P 32 and P 21

\(P_{10}\) :

Linear intensity

\(k\) :

Fisher dispersion factor

\(T_{\text{cc}}\) :

Trace with both ends contained

\(T_{\text{tc}}\) :

Trace with one end contained and the other end censored

\(T_{\text{tt}}\) :

Trace with both ends censored

\(l_{\text{m}}\) :

Measured mean trace length

\(l_{\text{sd}}\) :

Standard deviation of measured trace lengths

\(\mu\) :

Unbiased mean trace length

\(\sigma\) :

Standard deviation of unbiased trace lengths

\(\mu_{\text{D}}\) :

Mean discontinuity diameter

\(\sigma_{\text{D}}\) :

Standard deviation of discontinuity diameters

\(f\left( l \right)\) :

Probability density function of measured trace lengths

\(g\left( l \right)\) :

Probability density function of unbiased trace lengths

\(g\left( D \right)\) :

Probability density function of discontinuity diameters

\(N\) :

Number of discontinuities intersecting a sampling window

\(N_{\hbox{min} }\) :

Minimum number of discontinuities intersecting a sampling window

\(N_{\text{l}}\) :

Number of foliation planes cutting the scanline

\(L_{\text{T}}\) :

Total scanline length

References

  • Baecher GB (1980) Progressively censored sampling of rock joints traces. Math Geol 12(1):33–40. doi:10.1007/BF01039902

    Article  Google Scholar 

  • Cacciari PP (2014) Study of a tunnel constructed in a fractured rock mass using geological and geotechnical surveys and the distinct element method. Dissertation. University of São Paulo, São Paulo (in Portuguese)

  • Cacciari PP, Futai MM (2016) Mapping and characterization of rock discontinuities in a tunnel using 3D terrestrial laser scanning. Bull Eng Geol Environ 75(1):223–237. doi:10.1007/s10064-015-0748-3

    Article  Google Scholar 

  • Crosta G (1997) Evaluating rock mass geometry from photogrammetric images. Rock Mech Rock Eng 30(1):35–38. doi:10.1007/BF01020112

    Article  Google Scholar 

  • Cruden DM (1977) Describing the size of discontinuities. Int J Rock Mech Min Sci Geomech Abstr 14:133–137. doi:10.1016/0148-9062(77)90004-3

    Article  Google Scholar 

  • Curtaz M, Ferrero AM, Roncella R, Segalini A, Umili G (2014) Terrestrial photogrammetry and numerical modelling for the stability analysis of rock slopes in high mountain areas: aiguilles Marbrées case. Rock Mech Rock Eng 47:605–620. doi:10.1007/s00603-013-0446-z

    Article  Google Scholar 

  • Dershowitz WS, Herda H (1992) Interpretation of fracture spacing and intensity. In: 42nd US rock mechanics/geomechanics symposium. American Rock Mechanics Association, Santa Fe

  • Elmo D (2006) Evaluation of a hybrid FEM/DEM approach for determination of rock mass strength using a combination of discontinuity mapping and fracture mechanics modelling, with particular emphasis on modelling of jointed pillars. Thesis, University of Exeter, Exeter

  • Faro Technologies (2016) Focus 3D laser scanner. Faro Technologies Inc., Lake Mary. http://www.faro.com

  • Fekete S, Diederichs M (2013) Integration of three-dimensional laser scanning with discontinuum modelling for stability analysis of tunnels in blocky rockmasses. Int J Rock Mech Min Sci 57:11–23. doi:10.1016/j.ijrmms.2012.08.003

    Google Scholar 

  • Fekete S, Diederichs M, Lato M (2010) Geotechnical and operational applications for 3-dimensional laser scanning in drill and blast tunnels. J Tunn Undergr Space Technol 25:614–628. doi:10.1016/j.tust.2010.04.008

    Article  Google Scholar 

  • Ferrero AM, Umili G (2011) Comparison of methods for estimating fracture size and intensity applied to Aiguille Marbrée (Mont Blanc). Int J Rock Mech Min Sci 48(8):1262–1270. doi:10.1016/j.ijrmms.2011.09.011

    Article  Google Scholar 

  • Ferrero AM, Forlani G, Roncella R, Voyat HI (2009) Advanced geostructural survey methods applied to rock mass characterization. Rock Mech Rock Eng 42:631–665. doi:10.1007/s00603-008-0010-4

    Article  Google Scholar 

  • Firpo G, Salvini R, Francioni M, Ranjith PG (2011) Use of digital terrestrial photogrammetry in rocky slope stability analysis by distinct elements numerical methods. Int J Rock Mech Min Sci 48(7):1045–1054. doi:10.1016/j.ijrmms.2011.07.007

    Article  Google Scholar 

  • Francioni M, Salvini R, Stead D, Litrico S (2014) A case study integrating remote sensing and distinct element analysis to quarry slope stability assessment in the Monte Altissimo area, Italy. Eng Geol 183:290–302. doi:10.1016/j.enggeo.2014.09.003

    Article  Google Scholar 

  • Han X, Chen J, Wang Q, Li Y, Zhang W, Yu T (2015) A 3D fracture network model for the undisturbed rock mass at the Songta dam site based on small samples. Rock Mech Rock Eng. doi:10.1007/s00603-015-0747-5

    Google Scholar 

  • Havaej M, Coggan J, Stead D, Elmo D (2015) A combined remote sensing–numerical modelling approach to the stability analysis of Delabole slate quarry. Rock Mech Rock Eng, Cornwall. doi:10.1007/s00603-015-0805-z

    Google Scholar 

  • InnovMetric Software (2014) Polyworks version 2014, Quebec City. http://www.innovmetric.com

  • Itasca™ (2014) 3DEC version 5.00. Itasca Consulting Group Inc., Minneapolis. http://www.itascacg.com

  • Kemeny J, Turner K, Norton B (2006) LIDAR for rock mass characterization: hardware, software, accuracy and best-practices. Proceedings of the workshop on laser and photogrammetric methods for rock face characterization. Golden, CO, pp 49–61

    Google Scholar 

  • Kim BH, Cai M, Kaiser PK, Yang HS (2007) Estimation of block size for rock masses with non-persistent joints. Rock Mech Rock Eng 40(2):169–192. doi:10.1007/s00603-006-0093-8

    Article  Google Scholar 

  • Kulatilake PHSW, Wu TH (1984) Estimation of mean trace length of discontinuities. Rock Mech Rock Eng 17:215–232. doi:10.1007/BF01032335

    Article  Google Scholar 

  • Lato M, Diederichs MS, Hutchinson DJ, Harrap R (2009) Optimization of LiDAR scanning and processing for automated structural evaluation of discontinuities in rockmasses. Int J Rock Mech Min Sci 46(1):194–199. doi:10.1016/j.ijrmms.2008.04.007

    Article  Google Scholar 

  • Lato MJ, Diederichs MS, Hutchinson DJ (2010) Bias correction for view-limited lidar scanning of rock outcrops structural characterization. Rock Mech Rock Eng 43:615–628. doi:10.1007/s00603-010-0086-5

    Article  Google Scholar 

  • Mah J, Samson C, Mckinnon SD (2011) 3D laser imaging for joint orientation analysis. Int J Rock Mech Min Sci 48:932–941. doi:10.1016/j.ijrmms.2011.04.010

    Article  Google Scholar 

  • Mah J, McKinnon SD, Samson C, Thibodeau D (2016) Wire mesh filtering in 3D image data of rock faces. J Tunn Undergr Space Technol 57:111–118. doi:10.1016/j.tust.2015.11.005

    Article  Google Scholar 

  • Mauldon M (1998) Estimating mean fracture trace length and density from observation in convex windows. Rock Mech Rock Eng 31(4):201–216. doi:10.1007/s006030050021

    Article  Google Scholar 

  • Mauldon M, Dunne WM, Rohrbaugh MB Jr (2001) Circular scanlines and circular windows: new tools for characterizing the geometry of fracture traces. J Struct Geol 23:247–258. doi:10.1016/S0191-8141(00)00094-8

    Article  Google Scholar 

  • McNeel R (2014) Rhinoceros, modelling tool for designers. McNeel North America

  • Pahl PJ (1981) Estimating the mean length of discontinuity traces. Int J Rock Mech Min Sci Geomech Abstr 18:221–228. doi:10.1016/0148-9062(81)90976-1

    Article  Google Scholar 

  • Priest SD (1993) Discontinuity analysis for rock engineering. Chapman & Hall, London

    Book  Google Scholar 

  • Rogers S, Elmo D, Webb G, Catalan A (2015) Volumetric fracture intensity measurement for improved rock mass characterization and fragmentation assessment in block caving operations. Rock Mech Rock Eng 8:633–649. doi:10.1007/s00603-014-0592-y

    Article  Google Scholar 

  • Slob S, Hack HRGK, Feng Q, Ro¨shoff K, Tunner AK (2007) Fracture mapping using 3D laser scanning techniques. In: 11th congress of the international society for rock mechanics, Lisbon, pp 299–302

  • Spreafico MC, Francioni M, Cervi F, Stead D, Bitelli G, Ghirotti M, Girelli VA, Lucente CC, Tini MA, Borgatti L (2015) Back analysis of the 2014 San Leo landslide using combined terrestrial laser scanning and 3D distinct element modelling. Rock Mech Rock Eng 49(6):2235–2251. doi:10.1007/s00603-015-0763-5

    Article  Google Scholar 

  • Strouth A, Eberhardt E, Hungr O (2006) The use of lidar to overcome rock slope hazard data collection challenges at Afternoon Creek, Washington. In: 41st U.S. symposium on rock mechanics (USRMS), CO, pp 17–21

  • Sturzenegger M, Stead D (2009) Close-range terrestrial digital photogrammetry and terrestrial laser scanning for discontinuity characterization on rock cuts. Eng Geol 106:163–182. doi:10.1016/j.enggeo.2009.03.004

    Article  Google Scholar 

  • Sturzenegger M, Stead D, Elmo D (2011) Terrestrial remote sensing based estimation of mean trace length, trace intensity and block size/shape. Eng Geol 119:96–111. doi:10.1016/j.enggeo.2011.02.005

    Article  Google Scholar 

  • Terzaghi RD (1965) Sources of error in joint surveys. Geotechnique 15:287–304. doi:10.1680/geot.1965.15.3.287

    Article  Google Scholar 

  • Umili G, Ferrero A, Einstein HH (2013) A new method for automatic discontinuity traces sampling on rock mass 3D model. Comput Geosci 51:182–192. doi:10.1016/j.cageo.2012.07.026

    Article  Google Scholar 

  • Warburton PM (1980) A stereological interpretation of joint trace data. Int J Rock Mech Min Sci Geomech Abstr 17:181–190. doi:10.1016/0148-9062(80)91084-0

    Article  Google Scholar 

  • Wu Q, Kulatilake PHSW, Tang H (2011) Comparison of rock discontinuity mean trace length and density estimation methods using discontinuity data from an outcrop in Wenchuan area, China. Comput Geotech 38:258–268. doi:10.1016/j.compgeo.2010.12.003

    Article  Google Scholar 

  • Zeeb C, Gomez-Rivas E, Bons PD, Virgo S, Blum P (2013) Fracture network evaluation program (FraNEP): a software for analyzing 2D fracture trace-line maps. Comput Geosci 60:11–22. doi:10.1016/j.cageo.2013.04.027

    Article  Google Scholar 

  • Zhang L, Einstein HH (1998) Estimating the mean trace length of rock discontinuities. Rock Mech Rock Eng 31(4):217–235. doi:10.1007/s006030050022

    Article  Google Scholar 

  • Zhang L, Einstein HH (2000) Estimating the intensity of rock discontinuities. Int J Rock Mech Min Sci 37:819–837. doi:10.1016/S1365-1609(00)00022-8

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the company VALE SA, the Brazilian National Council for Scientific and Technological Development (CNPq) and the São Paulo Research Foundation (FAPESP) for logistical and financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro Pazzoto Cacciari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cacciari, P.P., Futai, M.M. Modeling a Shallow Rock Tunnel Using Terrestrial Laser Scanning and Discrete Fracture Networks. Rock Mech Rock Eng 50, 1217–1242 (2017). https://doi.org/10.1007/s00603-017-1166-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00603-017-1166-6

Keywords

Navigation