Skip to main content
Log in

Numerical Investigation of Dynamic Rock Fracture Toughness Determination Using a Semi-Circular Bend Specimen in Split Hopkinson Pressure Bar Testing

  • Original Paper
  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

Abstract

The International Society for Rock Mechanics (ISRM) has suggested a notched semi-circular bend technique in split Hopkinson pressure bar (SHPB) testing to determine the dynamic mode I fracture toughness of rock. Due to the transient nature of dynamic loading and limited experimental techniques, the dynamic fracture process associated with energy partitions remains far from being fully understood. In this study, the dynamic fracturing of the notched semi-circular bend rock specimen in SHPB testing is numerically simulated for the first time by the discrete element method (DEM) and evaluated in both microlevel and energy points of view. The results confirm the validity of this DEM model to reproduce the dynamic fracturing and the feasibility to simultaneously measure key dynamic rock fracture parameters, including initiation fracture toughness, fracture energy, and propagation fracture toughness. In particular, the force equilibrium of the specimen can be effectively achieved by virtue of a ramped incident pulse, and the fracture onset in the vicinity of the crack tip is found to synchronize with the peak force, both of which guarantee the quasistatic data reduction method employed to determine the dynamic fracture toughness. Moreover, the energy partition analysis indicates that simplifications, including friction energy neglect, can cause an overestimation of the propagation fracture toughness, especially under a higher loading rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Abbreviations

DEM:

Discrete element method

ISRM:

International Society for Rock Mechanics

NSCB:

Notched semi-circular bend

SHPB:

Split Hopkinson pressure bar

SIF:

Stress intensity factor

a :

Crack length of the NSCB sample (m)

α a :

Dimensionless crack length of the NSCB sample

A b :

Cross-section area of the pressure bars (m2)

A s :

Area of the fracture surface (m2)

B :

Thickness of the NSCB sample (m)

dF s :

Increment of the shear force (N)

ds :

Increment of the relative displacement (m)

E b :

Young’s modulus of the elastic bars (MPa)

E bond :

Potential energy stored in bonds (J)

E contact :

Potential energy stored in contacts (J)

E friction :

Friction energy (J)

E kinetic :

Kinetic energy (J)

f Im :

Values of the contact force m on the bar–specimen incident interface (N)

f Tm :

Values of the contact force n on the bar–specimen transmitted interface (N)

F Ic :

Force on the specimen’s incident end (N)

F Tc :

Force on the specimen’s transmitted end (N)

F nbi :

Normal force applied on the bond i (N)

F sbi :

Shear force applied on the bond i (N)

F ni :

Normal force applied on the contact i (N)

F si :

Shear force applied on the contact i (N)

G :

Fracture energy dissipated per unit area (J/m2)

I bi :

Moment of inertia of the bond i (kg m2)

I i :

Moment of inertia of the particle i (kg m2)

k nbi :

Normal stiffness of the bond i (N/m)

k sbi :

Shear stiffness of the bond i (N/m)

k ni :

Normal stiffness of the contact i (N/m)

k si :

Shear stiffness of the contact i (N/m)

K I :

Quasistatic stress intensity factor (MPa m0.5)

K IC :

Mode I fracture toughness (MPa m0.5)

K dIC :

Mode I dynamic initiation fracture toughness (MPa m0.5)

K dpIC :

Mode I dynamic propagation fracture toughness (MPa m0.5)

\(\mathop {K_{\text{I}} }\limits^{ \cdot }\) :

Loading rate (GPa m0.5/s)

M bi :

Moment applied on the bond i (Nm)

m i :

Mass of the particle i (kg)

N I :

Number of contacts on the bar–specimen incident interface

N T :

Number of contacts on the bar–specimen transmitted interface

N b :

Number of bonds

N t :

Number of total steps

N broken :

Number of broken bonds

N p :

Number of particles

N c :

Number of contacts

R :

Radius of the NSCB sample (m)

P 1 :

Axial force applied on the incident end of the sample (N)

P 2 :

Axial force applied on the transmitted end of the sample (N)

S :

Span of the supporting pins (m)

t i :

Instant when the stress wave first arrives at the incident end of the specimen (s)

t t :

Instant when the stress wave first arrives at the transmitted end of the specimen (s)

t b :

Instant when the force equilibrium on both ends of the specimen is first achieved (s)

t p :

Instant when the forces on both ends of the specimen reach the peak value (s)

t d :

Instant when the specimen is destroyed (s)

t e :

Instant when the loading process ends (s)

U :

Strain energy (J)

v i :

Translational velocity of the particle i (m/s)

W :

Surface energy (J)

ω i :

Rotational velocity of the particle i (rad/s)

Y :

Dimensionless stress intensity factor

ε i :

Incident strain signal on the incident bar

ε r :

Reflected strain signal on the incident bar

ε t :

Transmitted strain signal on the incident bar

σ :

Tensile strength of the bond (MPa)

τ :

Shear strength of the bond (MPa)

θ m :

Angle between the bar axis and the direction vector of the contact force m

θ n :

Angle between the bar axis and the direction vector of the contact force n

μ :

Force equilibrium coefficient

E :

Young’s modulus of the specimen (MPa)

\(\nu\) :

Poisson’s ratio of the specimen

References

  • Abe S, Place D, Mora P (2004) A parallel implementation of the lattice solid model for the simulation of rock mechanics and earthquake dynamics. Pure Appl Geophys 161(11–12):2265–2277

    Google Scholar 

  • Böhme W, Kalthoff JF (1982) The behavior of notched bend specimens in impact testing. Int J Fracture 20(4):R139–R143

    Article  Google Scholar 

  • Chen CH, Chen CS, Wu JH (2008) Fracture toughness analysis on cracked ring disks of anisotropic rock. Rock Mech Rock Eng 41:539–562

    Article  Google Scholar 

  • Chen R, Xia K, Dai F, Lu F, Luo SN (2009) Determination of dynamic fracture parameters using a semi-circular bend technique in split Hopkinson pressure bar testing. Eng Fract Mech 76:1268–1276

    Article  Google Scholar 

  • Cundall PA, Strack ODL (1979) A discrete numerical model for granular assemblies. Geotechnique 29(1):47–65

    Article  Google Scholar 

  • Dai F, Xia KW (2013) Laboratory measurements of the rate dependence of the fracture toughness anisotropy of Barre granite. Int J Rock Mech Min Sci 60:57–65

    Google Scholar 

  • Dai F, Chen R, Iqbal MJ, Xia K (2010a) Dynamic cracked chevron notched Brazilian disc method for measuring rock fracture parameters. Int J Rock Mech Min 47(4):606–613

    Article  Google Scholar 

  • Dai F, Chen R, Xia K (2010b) A semi-circular bend technique for determining dynamic fracture toughness. Exp Mech 50(6):783–791

    Article  Google Scholar 

  • Dai F, Huang S, Xia K, Tan Z (2010c) Some fundamental issues in dynamic compression and tension tests of rocks using split Hopkinson pressure bar. Rock Mech Rock Eng 43(6):657–666

    Article  Google Scholar 

  • Dai F, Xia K, Zheng H, Wang YX (2011) Determination of dynamic rock mode-I fracture parameters using cracked chevron notched semi-circular bend specimen. Eng Fract Mech 78(15):2633–2644

    Article  Google Scholar 

  • Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Trans Royal Soc London A 221:163–198

    Article  Google Scholar 

  • Hazzard JF, Young RP (2000) Simulating acoustic emissions in bonded-particle models of rock. Int J Rock Mech Min Sci 37:867–872

    Article  Google Scholar 

  • Hazzard JF, Young RP (2004) Dynamic modelling of induced seismicity. Int J Rock Mech Min Sci 41(8):1365–1376

    Article  Google Scholar 

  • Hazzard JF, Young RP, Maxwell SC (2000) Micromechanical modeling of cracking and failure in brittle rocks. J Geophys Res 105(B7):16683–16697

    Article  Google Scholar 

  • Hentz S, Donzé FV, Daudeville L (2004) Discrete element modelling of concrete submitted to dynamic loading at high strain rates. Comput Struct 82:2509–2524

    Article  Google Scholar 

  • Holt RM, Kjølaas J, Larsen I, Li L, Gotusso Pillitteri A, Sønstebø EF (2005) Comparison between controlled laboratory experiments and discrete particle simulations of the mechanical behaviour of rock. Int J Rock Mech Min Sci 42:985–995

    Article  Google Scholar 

  • Huang H (1999) Discrete element modeling of tool–rock interaction. Ph.D. thesis, University of Minnesota, USA

  • Irwin GR (1957) Analysis of stresses and strains near the end of a crack traversing a plate. J Appl Mech 24:361–364

    Google Scholar 

  • Kolsky H (1953) Stress waves in solids. Clarendon Press, Oxford

    Google Scholar 

  • Li QM, Lu YB, Meng H (2009) Further investigation on the dynamic compressive strength enhancement of concrete-like materials based on split Hopkinson pressure bar tests. Part II: numerical simulations. Int J Impact Eng 36:1335–1345

    Article  Google Scholar 

  • Li XB, Zou Y, Zhou ZL (2014) Numerical simulation of the rock SHPB test with a special shape striker based on the discrete element method. Rock Mech Rock Eng 47(5):1693–1709

    Article  Google Scholar 

  • Lu FY, Lin YL, Wang XY, Lu L, Chen R (2015) A theoretical analysis about the influence of interfacial friction in SHPB tests. Int J Impact Eng 79:95–101. doi:10.1016/j.ijimpeng.2014.10.008

    Article  Google Scholar 

  • Lundberg B (1976) A split Hopkinson bar study of energy absorption in dynamic rock fragmentation. Int J Rock Mech Min Sci Geomech Abstr 13(6):187–197

    Article  Google Scholar 

  • Potyondy DO, Cundall PA (2004) A bonded-particle model for rock. Int J Rock Mech Min Sci 41:1329–1364

    Article  Google Scholar 

  • Utili S, Zhao T, Houlsby GT (2015) 3D DEM investigation of granular column collapse: evaluation of debris motion and its destructive power. Eng Geology 186:3–16

    Article  Google Scholar 

  • Wang QZ, Feng F, Ni M, Gou XP (2011) Measurement of mode I and mode II rock dynamic fracture toughness with cracked straight through flattened Brazilian disc impacted by split Hopkinson pressure bar. Eng Fract Mech 78(12):2455–2469

    Article  Google Scholar 

  • Weatherley D, Boros V, Hancock W (2011) ESyS-Particle tutorial and user’s guide. Version 2.1. Earth Systems Science Computational Centre, The University of Queensland

  • Weerasooriya T, Moy P, Casem D, Cheng M, Chen W (2006) A four-point bend technique to determine dynamic fracture toughness of ceramics. J Am Ceramic Soc 89(3):990–995

    Article  Google Scholar 

  • Wu ZJ, Ngai L, Wong Y (2014) Investigating the effects of micro-defects on the dynamic properties of rock using Numerical Manifold method. Constr Build Mater 72:72–82

    Article  Google Scholar 

  • Xia K, Huang S, Dai F (2013) Evaluation of the frictional effect in dynamic notched semi-circular bend tests. Int J Rock Mech Min Sci 62:148–151

    Google Scholar 

  • Zhang QB, Zhao J (2013) Determination of mechanical properties and full-field strain measurements of rock material under dynamic loads. Int J Rock Mech Min Sci 60:423–439

    Google Scholar 

  • Zhang QB, Zhao J (2014) Quasi-static and dynamic fracture behaviour of rock materials: phenomena and mechanisms. Int J Fract 189:1–32

    Article  Google Scholar 

  • Zhang ZX, Kou SQ, Jiang LG, Lindqvist PA (2000) Effects of loading rate on rock fracture: fracture characteristics and energy partitioning. Int J Rock Mech Min Sci 37(5):745–762

    Article  Google Scholar 

  • Zhao GF, Fang JN, Zhao J (2011) A 3D distinct lattice spring model for elasticity and dynamic failure. Int J Numer Anal Meth Geomech 35:859–885

    Article  Google Scholar 

  • Zhao Y, Zhao GF, Jiang Y (2013) Experimental and numerical modelling investigation on fracturing in coal under impact loads. Int J Fract 183(1):63–80

    Article  Google Scholar 

  • Zhou YX, Xia K, Li XB, Li HB, Ma GW, Zhao J, Zhou ZL, Dai F (2012) Suggested methods for determining the dynamic strength parameters and mode-I fracture toughness of rock materials. Int J Rock Mech Min Sci 49:105–112

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the financial support from the National Program on Key Basic Research Project (no. 2015CB057903), National Natural Science Foundation of China (no. 51374149), Program for New Century Excellent Talents in University (NCET-13-0382), the Youth Science and Technology Fund of Sichuan Province (2014JQ0004) and the Doctoral Fund of Ministry of Education of China (no. 20130181110044).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Dai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Y., Dai, F., Xu, N.W. et al. Numerical Investigation of Dynamic Rock Fracture Toughness Determination Using a Semi-Circular Bend Specimen in Split Hopkinson Pressure Bar Testing. Rock Mech Rock Eng 49, 731–745 (2016). https://doi.org/10.1007/s00603-015-0787-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00603-015-0787-x

Keywords

Navigation