Skip to main content

Advertisement

Log in

Comparison of the optical coherence tomography-angiography (OCT-A) vascular measurements between molecularly confirmed MODY and age-matched healthy controls

  • Original Article
  • Published:
Acta Diabetologica Aims and scope Submit manuscript

Abstract

Aims

Previous structural, vascular density, and perfusion studies have mostly comprised type 1 and type 2 diabetes, even in the absence of retinopathy. The current study aimed to compare macular vessel density (VD) measurements between maturity-onset diabetes of the young (MODY) patients and controls.

Methods

The macular VD of superficial, deep retina, and choriocapillaris (CC), and central macular thickness (CMT), foveal avascular zone (FAZ), FAZ perimetry, VD of the total retina at 300 µm around the FAZ (FD), and acirculatory index (AI) measurements were taken and analyzed via OCT-A (RTVue XR 100-2 Avanti, AngioVue) and were compared between molecularly confirmed MODY (glucokinase (GCK) variants) patients and healthy controls.

Results

Twenty-five MODY patients and 30 healthy controls were included in the study. The mean plasma hemoglobin A1c level in the MODY group was 6.39 ± 0.38. The mean age was 13.8 ± 2.1 in the MODY group and was 12.6 ± 2.5 years among controls. There was no significant difference in terms of the age, superficial and deep retinal VD, FAZ, FAZ perimetry, CMT, FD, or AI between the groups. Compared to the healthy controls, a slight but significant increase in the CC-VD was detected in the MODY group, but only in the parafoveal and perifoveal regions (p = 0.034, p = 0.009).

Conclusion

The significant CC-VD increase in the MODY group might be associated with hyperglycemia and/or relatively poor and vulnerable peripheral vascular CC perfusion compared to the central. Previous thickness and VD results of childhood or adolescent diabetes were distributed in a wider range, suggesting that various factors, including some not yet clearly defined, may affect the choroidal vasculature independently of glycemia or as a contributing factor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Flannick J, Johansson S, Njølstad PR (2016) Common and rare forms of diabetes mellitus: towards a continuum of diabetes subtypes. Nat Rev Endocrinol 12(7):394–406. https://doi.org/10.1038/NRENDO.2016.5

    Article  CAS  PubMed  Google Scholar 

  2. Sanyoura M, Philipson LH, Naylor R (2018) Monogenic diabetes in children and adolescents: recognition and treatment options. Curr Diabet Rep. https://doi.org/10.1007/s11892-018-1024-2

    Article  Google Scholar 

  3. Nkonge KM, Nkonge DK, Nkonge TN (2020) The epidemiology, molecular pathogenesis, diagnosis, and treatment of maturity-onset diabetes of the young (MODY). Clin Diabet Endocrinol 6(1):20. https://doi.org/10.1186/S40842-020-00112-5

    Article  Google Scholar 

  4. Owen K. Orphanet: MODY. Noviembre. Published 2014. Accessed on March 13, 2022. https://www.orpha.net/consor/cgi-bin/OC_Exp.php?Lng=GB&Expert=552

  5. Firdous P, Nissar K, Ali S et al (2018) Genetic testing of maturity-onset diabetes of the young current status and future perspectives. Front Endocrinol (Lausanne) 9:253. https://doi.org/10.3389/fendo.2018.00253

    Article  PubMed  Google Scholar 

  6. Amed S, Dean HJ, Panagiotopoulos C et al (2010) Type 2 diabetes, medication-induced diabetes, and monogenic diabetes in Canadian children: a prospective national surveillance study. Diabetes Care 33(4):786–791. https://doi.org/10.2337/dc09-1013

    Article  PubMed  PubMed Central  Google Scholar 

  7. Urbanová J, Brunerová L, Brož J (2018) Hidden MODY-Looking for a needle in a Haystack. Front Endocrinol (Lausanne) 9:355. https://doi.org/10.3389/FENDO.2018.00355/BIBTEX

    Article  PubMed  Google Scholar 

  8. Amed S, Oram R (2016) Maturity-onset diabetes of the young (MODY): making the right diagnosis to optimize treatment. Can J Diabet 40(5):449–454. https://doi.org/10.1016/j.jcjd.2016.03.002

    Article  Google Scholar 

  9. Rafique I, Mir A, Saqib MAN, Naeem M, Marchand L, Polychronakos C (2021) Causal variants in maturity onset diabetes of the young (MODY)—a systematic review. BMC Endocr Disord 21(1):1–6. https://doi.org/10.1186/S12902-021-00891-7/FIGURES/4

    Article  Google Scholar 

  10. Jia Y, Tan O, Tokayer J et al (2012) Split-spectrum amplitude-decorrelation angiography with optical coherence tomography. Opt Expr 20(4):4710–4725. https://doi.org/10.1364/OE.20.004710

    Article  Google Scholar 

  11. Gao SS, Jia Y, Zhang M et al (2016) Optical coherence tomography angiography. Invest Ophthalmol Vis Sci 57(9):27–36. https://doi.org/10.1167/iovs.15-19043

    Article  Google Scholar 

  12. Chua J, Sim R, Tan B et al (2020) Optical coherence tomography angiography in diabetes and diabetic retinopathy. J Clin Med 9(6):1723. https://doi.org/10.3390/jcm9061723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mayer-Davis EJ, Kahkoska AR, Jefferies C et al (2018) ISPAD clinical practice consensus guidelines 2018: definition, epidemiology, and classification of diabetes in children and adolescents. Pediatr Diabet 19:7–19. https://doi.org/10.1111/pedi.12773

    Article  Google Scholar 

  14. [website, accessed on 23th November 2022] DiMeglio LA, Acerini CL, Codner E et al. Chapter 8: Glycemic control targets and glucose monitoring for children, adolescents with Diabetes. International Society of Pediatric and Adolescent Diabetes (ISPAD). url: https://www.ispad.org/page/Guidelines2018Chap8

  15. Richards S, Aziz N, Bale S et al (2015) Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American college of medical genetics and genomics and the association for molecular pathology. Genet Med 17(5):405–424. https://doi.org/10.1038/gim.2015.30

    Article  PubMed  PubMed Central  Google Scholar 

  16. Kinoshita T, Mitamura Y, Shinomiya K et al (2017) Diurnal variations in luminal and stromal areas of choroid in normal eyes. Br J Ophthalmol 101(3):360–364. https://doi.org/10.1136/bjophthalmol-2016-308594

    Article  PubMed  Google Scholar 

  17. Çavdarli C, Çavdarli B, Topcu-Yilmaz P, Polat Gültekin B (2020) Optical coherence tomography-angiographic vascular densities in familial mediterranean fever (FMF) patients with M694V mutations. Ophthalmic Genet 41(3):257–262. https://doi.org/10.1080/13816810.2020.1759108

    Article  CAS  PubMed  Google Scholar 

  18. Coscas F, Sellam A, Glacet-Bernard A et al (2016) Normative data for vascular density in superficial and deep capillary plexuses of healthy adults assessed by optical coherence tomography angiography. Invest Ophthalmol Vis Sci 57(9):211–223. https://doi.org/10.1167/iovs.15-18793

    Article  Google Scholar 

  19. Agemy SA, Scripsema NK, Shah CM, Gentile RC, Hsiao Y, Zhou Q (2015) Retinal vascular perfusion density mapping using optical coherence tomography angiography in normals and diabetic retinopathy patients. Retina 35(11):2353–2363. https://doi.org/10.1097/IAE.0000000000000862

    Article  PubMed  Google Scholar 

  20. Agra CLDM, Lira RPC, Pinheiro FG, Sá LHSE, Bravo Filho VTF (2021) Optical coherence tomography angiography: microvascular alterations in diabetic eyes without diabetic retinopathy. Arq Bras Oftalmol 84(2):149–157. https://doi.org/10.5935/0004-2749.20210023

    Article  PubMed  Google Scholar 

  21. Yasin Alibhai A, Moult EM, Shahzad R et al (2018) Quantifying microvascular changes using OCT angiography in diabetic eyes without clinical evidence of retinopathy. Ophthalmol Retina 2(5):418–427. https://doi.org/10.1016/j.oret.2017.09.011

    Article  CAS  PubMed  Google Scholar 

  22. Krawitz BD, Mo S, Geyman LS et al (2017) Acircularity index and axis ratio of the foveal avascular zone in diabetic eyes and healthy controls measured by optical coherence tomography angiography. Vision Res 139:177–186. https://doi.org/10.1016/j.visres.2016.09.019

    Article  PubMed  Google Scholar 

  23. Conti FF, Qin VL, Rodrigues EB et al (2019) Choriocapillaris and retinal vascular plexus density of diabetic eyes using split-spectrum amplitude decorrelation spectral-domain optical coherence tomography angiography. Br J Ophthalmol 103(4):452–456. https://doi.org/10.1136/bjophthalmol-2018-311903

    Article  PubMed  Google Scholar 

  24. Stulova AN, Semenova NS, Zheleznyakova AV, Akopyan VS, Lipatov DV (2021) OCT-A and functional signs of preclinical retinopathy in type 1 diabetes mellitus. Ophthalmic Surg Lasers Imaging Retina 52(S1):S30–S34. https://doi.org/10.3928/23258160-20210518-06

    Article  PubMed  Google Scholar 

  25. Choi W, Waheed NK, Moult EM et al (2017) Ultrahigh speed swept source optical coherence tomography angiography of retinal and choriocapillaris alterations ın diabetıc patients with and without retinopathy. Retina 37(1):11–21. https://doi.org/10.1097/IAE.0000000000001250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Vujosevic S, Muraca A, Alkabes M et al (2019) Early microvascular and neural changes in patients with type 1 and type 2 diabetes mellitus without clinical signs of diabetıc retinopathy. Retina 39(3):435–445. https://doi.org/10.1097/IAE.0000000000001990

    Article  PubMed  Google Scholar 

  27. Agemy SA, Scripsema NK, Shah CM et al (2015) Retinal vascular perfusion density mapping using optical coherence tomography angiography in normals and diabetic retinopathy patients. Retina 35(11):2353–2363. https://doi.org/10.1097/IAE.0000000000000862

    Article  PubMed  Google Scholar 

  28. Battista M, Borrelli E, Sacconi R, Bandello F, Querques G (2020) Optical coherence tomography angiography in diabetes: a review. Eur J Ophthalmol 30(3):411–416. https://doi.org/10.1177/1120672119899901

    Article  PubMed  Google Scholar 

  29. Zhang B, Chou Y, Zhao X, Yang J, Chen Y (2021) Early detection of microvascular impairments with optical coherence tomography angiography in diabetic patients without clinical retinopathy: a meta-analysis. Am J Ophthalmol 222:226–237. https://doi.org/10.1016/J.AJO.2020.09.032

    Article  PubMed  Google Scholar 

  30. Freiberg FJ, Pfau M, Wons J, Wirth MA, Becker MD, Michels S (2016) Optical coherence tomography angiography of the foveal avascular zone in diabetic retinopathy. Graefes Arch Clin Exp Ophthalmol 254:1051–1058

    Article  CAS  PubMed  Google Scholar 

  31. Delvecchio M, Pastore C, Giordano P (2020) Treatment options for MODY patients: a systematic review of literature. Diabetes Ther 11(8):1667–1685. https://doi.org/10.1007/s13300-020-00864-4

    Article  PubMed  PubMed Central  Google Scholar 

  32. Mulfaul K, Russell JF, Voigt AP, Stone EM, Tucker BA, Mullins RF (2022) The essential role of the choriocapillaris in vision: novel insights from imaging and molecular biology. Annu Rev Vis Sci 8:33–52. https://doi.org/10.1146/annurev-vision-100820-085958

    Article  PubMed  PubMed Central  Google Scholar 

  33. Querques G, Lattanzio R, Querques L et al (2012) Enhanced depth imaging optical coherence tomography in type 2 diabetes. Invest Ophthalmol Vis Sci 53(10):6017–6024. https://doi.org/10.1167/iovs.12-9692

    Article  PubMed  Google Scholar 

  34. Esmaeelpour M, Brunner S, Ansari-Shahrezaei S et al (2012) Choroidal thinning in diabetes type 1 detected by 3-dimensional 1060 nm optical coherence tomography. Invest Ophthalmol Vis Sci 53(11):6803–6809. https://doi.org/10.1167/iovs.12-10314

    Article  PubMed  Google Scholar 

  35. Esmaeelpour M, Považay B, Hermann B et al (2011) Mapping choroidal and retinal thickness variation in type 2 diabetes using three-dimensional 1060-nm optical coherence tomography. Invest Ophthalmol Vis Sci 52(8):5311–5316. https://doi.org/10.1167/iovs.10-6875

    Article  PubMed  Google Scholar 

  36. Vujosevic S, Martini F, Cavarzeran F, Pilotto E, Midena E (2012) Macular and peripapillary choroidal thickness in diabetic patients. Retina 32(9):1781–1790. https://doi.org/10.1097/IAE.0b013e31825db73d

    Article  PubMed  Google Scholar 

  37. Lee HK, Lim JW, Shin MC (2013) Comparison of choroidal thickness in patients with diabetes by spectral-domain optical coherence tomography. Korean J Ophthalmol 27(6):433–439. https://doi.org/10.3341/kjo.2013.27.6.433

    Article  PubMed  PubMed Central  Google Scholar 

  38. Kim JT, Lee DH, Joe SG, Kim JG, Yoon YH (2013) Changes in choroidal thickness in relation to the severity of retinopathy and macular edema in type 2 diabetic patients. Investig Ophthalmol Vis Sci 54(5):3378–3384. https://doi.org/10.1167/iovs.12-11503

    Article  Google Scholar 

  39. Ferreira JT, Vicente A, Proença R, Santos BO, Cunha JP, Alves M et al (2018) Choroidal thickness in diabetic patients without diabetic retinopathy. Retina 38(4):795–804. https://doi.org/10.1097/IAE.0000000000001582

    Article  Google Scholar 

  40. Ferrara D, Waheed NK, Duker JS (2016) Investigating the choriocapillaris and choroidal vasculature with new optical coherence tomography technologies. Prog Retin Eye Res 52:130–155. https://doi.org/10.1016/j.preteyeres.2015.10.002

    Article  PubMed  Google Scholar 

  41. Jo Y, Ikuno Y, Iwamoto R, Okita K, Nishida K (2014) Choroidal thickness changes after diabetes type 2 and blood pressure control in a hospitalized situation. Retina 34(6):1190–1198. https://doi.org/10.1097/IAE.0000000000000051

    Article  PubMed  Google Scholar 

  42. Wiley HE, Ferris III FL (2013) Nonproliferative diabetic retinopathy and diabetic macular edema. In: Ryan SJ, editor. Retina. (Londres: Elsevier Saunders) pp 940–68

  43. Reis A, Mateus C, Melo P et al (2014) Neuroretinal dysfunction with intact bloodretinal barrier and absent vasculopathy in diabetes type 1. Diabetes 63:3926–3937. https://doi.org/10.2337/db13-1673

    Article  CAS  PubMed  Google Scholar 

  44. Yoshida A, Kojima M, Ogasawara H, Ishiko S (1991) Oscillatory potentials and permeability of the blood-retinal barrier in noninsulin-dependent diabetic patients without retinopathy. Ophthalmology 98:1266–1271. https://doi.org/10.1016/s0161-6420(91)32144-4

    Article  CAS  PubMed  Google Scholar 

  45. Tiedeman JS, Kirk SE, Srinivas S, Beach JM (1998) Retinal oxygen consumption during hyperglycemia in patients with diabetes without retinopathy. Ophthalmology 105(1):31–36. https://doi.org/10.1016/s0161-6420(98)71029-1

    Article  CAS  PubMed  Google Scholar 

  46. Bartol-Puyal FA, Isanta C, Calvo P, Méndez-Martínez S, Ruiz-Moreno Ó, Pablo L (2022) Mapping of choriocapillaris vascular density in young and aged healthy subjects. Eur J Ophthalmol 32(5):2789–2800. https://doi.org/10.1177/11206721211067019

    Article  PubMed  Google Scholar 

  47. Wangsa-Wirawan ND, Linsenmeier RA (2003) Retinal oxygen: fundamental and clinical aspects. Arch Ophthalmol 121(4):547–557. https://doi.org/10.1001/archopht

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cemal Çavdarlı.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Ethical standard/Human and animal rights disclosure

All of the procedures and clinical interventions performed in the study were in accordance with the ethical standards of the Local Institutional Ethics Committee (1st Ethics Committee of Ankara City Hospital, Date: 02.04.2020, Approval number: El/409/2020) and the Declaration of Helsinki (1964) and its later amendments.

Informed consent

Informed consent was obtained from the patients, healthy controls, and their relatives (or legal guardians).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article belongs to the topical collection Eye Complications of Diabetes, managed by Giuseppe Querques.

Supplementary Information

Below is the link to the electronic supplementary material.

592_2024_2273_MOESM1_ESM.jpg

Representative 6 × 6 mm en-face OCT-A vascular density assessment used for quantification of the superficial and deep retinal layers and the CC and corresponding vascular density percentages (A, B, and C, respectively), and representative image of the FAZ (non-flow) area (mm2), FAZ perimetry (mm), total retinal VD 300 μm around the FAZ perimetry (FD, %), AI, andCMT assessment of the OCT-A software (D, E, and F, respectively) (JPG 3220 kb)

Supplementary file2 (DOCX 21 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Çavdarlı, C., Büyükyılmaz, G., Çavdarlı, B. et al. Comparison of the optical coherence tomography-angiography (OCT-A) vascular measurements between molecularly confirmed MODY and age-matched healthy controls. Acta Diabetol (2024). https://doi.org/10.1007/s00592-024-02273-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00592-024-02273-6

Keywords

Navigation