Skip to main content

Advertisement

Log in

Beneficial effects of astragalus polysaccharides treatment on cardiac chymase activities and cardiomyopathy in diabetic hamsters

  • Original Article
  • Published:
Acta Diabetologica Aims and scope Submit manuscript

Abstract

Over-activation of the local chymase–angiotensin II (Ang II) system has a dominant role in diabetic cardiomyopathy. Astragalus polysaccharides (APS) are used in traditional Chinese medicine to boost immunity. In this study, we investigated the effects of APS treatment on cardiac function, myocardial collagen expression, cardiac ultrastructure, cardiac matrix metalloproteinase (MMP) activity, levels of plasma glycosylated serum protein (GSP), and myocardial enzymes, and the expression of Ang II, chymase, and angiotensin-converting enzyme (ACE) in the diabetic hamster myocardium. Diabetes was induced by a single injection of streptozotocin (60 mg/kg ip). The experimental groups consisted of normal control (n = 15), diabetic (n = 15), insulin-treated diabetic (n = 15, NPH 1–2 U/day ip), and APS-treated diabetic (n = 30, APS 1–2 g/kg/day orally for 10 weeks) hamsters. Diabetic hamsters treated with insulin or APS exhibited significantly decreased blood glucose, plasma GSP, and myocardial enzymes, as well as improvements in cardiac function and cardiac ultrastructure. Compared with insulin treatment, APS treatment significantly reduced myocardial collagen (type I and III) expression and lowered cardiac MMP-2 activity, myocardial Ang II levels, myocardial chymase expression, and p-ERK1/2 kinase expression. In diabetic hamsters, myocardial ACE expression and plasma Ang II levels was not altered by insulin or APS treatment. These results indicate that treatment of diabetic hamsters with APS inhibited the local chymase–Ang II system and improved markers of diabetic cardiomyopathy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Flack JM, Hamaty M, Staffilen BA (2004) Renin-angiotensin-aldosterone-kinin system influences on diabetic vascular disease and cardiomyopathy. Miner-Electrolyte Metab 24(6):412–422

    Article  Google Scholar 

  2. Urata H, Kinoshita A, Misono KS (2000) Identification of a highly specific chymase as the major angiotensin II-forming enzyme in the human heart. J Biol Chem 265(36):22348–22359

    Google Scholar 

  3. Nishimoto M, Takai S, Sawada Y (2001) Chymase-dependent angiotensin II formation in the saphenous vein versus the internal thoracic artery. J Thorac Cardiovasc Surg 121(4):729–736

    Article  CAS  PubMed  Google Scholar 

  4. Ni Y, Su Q, Liu X (1998) Experimental study of optimized techniques of water decoction extraction of Astragalus polysaccharide. China J Chin Med 23(6):284–286

    CAS  Google Scholar 

  5. Chen W, Yu M-H (2004) Effects of astragalus polysaccharide on gene expression profiles in islets of NOD mice with microarray technique. Chin J Endocrinol Metab 20(6):545–548

    CAS  Google Scholar 

  6. Chen W, Yu M-H, Li Y-M (2007) Effects of astragalus polysaccharides on ultrastructure and oxidation/apoptosis related cytokines’ gene expression of NOD mice’s islets. Fudan Univ J Med Sci 34(2):269–272

    Google Scholar 

  7. Chen W, Xia Y-P, Yu M-H (2007) Astragalus polysaccharides effect on pancreatic histopathology. China J Modern Med 17(2):146–148

    CAS  Google Scholar 

  8. Chen W, Li Y-M, Yu M-H (2007) Immunoregulation effects of astragalus polysaccharides on T helper lymphocyte subgroups in nonobese diabetic mice. China J Modern Med 17(1):28–31

    Google Scholar 

  9. Cong L, Li Y-M, Yu M-H (2006) Effect of astragalus polysaccharides on the expression of myocardial collagen in hamsters with diabetic cardiomyopathy. Chin J Clin Rehab 10(7):64–66

    CAS  Google Scholar 

  10. Sunni S, Bishop SP, Kent SP (2001) Diabetic cardiomyopathy, a morphological study of intramyocardial arteries. Arch Pathol Lab Med 110(5):375–389

    Google Scholar 

  11. Takai S, Sakaguchi M, Jin DL (2001) Different angiotensin II-forming pathways in human and rat vascular tissues. Clin Chim Acta 305(1–2):191–203

    Article  CAS  PubMed  Google Scholar 

  12. Packer M, Poole-Wilson PA, Armstrong PW (1999) Comparative effects of low and high doses of the angiotensin-converting enzyme inhibitor, lisinopril, on morbidity and mortality in chronic heart failure. ATLAS Study Group. Circulation 100(23):2312–2322

    CAS  PubMed  Google Scholar 

  13. Uchiyama-Tanaka Y, Matsubara H, Nozawa Y (2001) Angiotensin II signaling and HB-EGF shedding via metalloproteinase in glomerular mesangial cells. Kidney Int 60(6):2153–2161

    Article  CAS  PubMed  Google Scholar 

  14. Sekine S, Nitta K, Uchida K (2003) Possible involvement of mitogen-activated protein kinase in the angiotensin II-induced fibronectin synthesis in renal interstitial fibroblasts. Arch Biochem Biophys 415(1):63–77

    Article  CAS  PubMed  Google Scholar 

  15. Awazu M, Ishikura K, Hida ML (1999) Mechanisms of mitogen-activated protein kinase activation in experimental diabetes. J Am Soc Nephrol 10(4):738–744

    CAS  PubMed  Google Scholar 

  16. Takai S, Miyazaki M (2002) The role of chymase in vascular proliferation. Drug News Perspect 15(5):278–285

    Article  CAS  PubMed  Google Scholar 

  17. Jin D, Takai S, Yamada M (2000) The functional ratio of chymase and angiotensin converting enzyme in angiotensin I-induced vascular contraction in monkeys, dogs and rats. Jpn J Pharmacol 84(4):449–455

    Article  CAS  PubMed  Google Scholar 

  18. Jin D, Takai S, Yamada M (2001) Possible roles of cardiac chymase after myocardial infarction in hamster hearts. Jpn J Pharmacol 86(2):203–208

    Article  CAS  PubMed  Google Scholar 

  19. Miyazaki M, Takai S (2001) Local angiotensin II-generating system in vascular tissues: the roles of chymase. Hypertens Res 24(3):189–194

    Article  CAS  PubMed  Google Scholar 

  20. Yu CM, Tipoe GL, Wing-Hon Lai K (2001) Effects of combination of angiotensin converting enzyme inhibitor and angiotensin receptor antagonist on inflammatory cellular infiltration and myocardial interstitial fibrosis after acute myocardial infarction. J Am Coll Cardiol 38(4):1207–1211

    Article  CAS  PubMed  Google Scholar 

  21. Frank BT, Rossall JC, Caughey GH (2001) Mast cell tissue inhibitor of metalloproteinase-1 is cleaved and inactivated extracellularly by alpha-chymase. J Immunol 166(4):2783–2793

    CAS  PubMed  Google Scholar 

  22. Browe GL, Chancey AL, Thanigaraj S (2002) Cause and effect relationship between myocardial mast cell number and matrix metalloproteinase activity. Am J Physiol Heart Circ Physiol 283(2):H518–H523

    Google Scholar 

  23. de Almeida A, Mustin D, Forman MF (2002) Effects of mast cells on the behavior of isolated heart fibroblasts: modulation of collagen remodeling and gene expression. J Cell Physiol 191(1):51–62

    Article  PubMed  Google Scholar 

  24. Hara M, Ono K, Hwang MW (2002) Evidence for a role of mast cells in the evolution to congestive heart failure. J Exp Med 195(3):375–381

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi-Ming Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, W., Yu, MH., Li, YM. et al. Beneficial effects of astragalus polysaccharides treatment on cardiac chymase activities and cardiomyopathy in diabetic hamsters. Acta Diabetol 47 (Suppl 1), 35–46 (2010). https://doi.org/10.1007/s00592-009-0116-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00592-009-0116-5

Keywords

Navigation