Skip to main content
Log in

Carbon and nitrogen fluxes between beech and their ectomycorrhizal assemblage

  • Short Note
  • Published:
Mycorrhiza Aims and scope Submit manuscript

Abstract

To determine the exchange of nitrogen and carbon between ectomycorrhiza and host plant, young beech (Fagus sylvatica) trees from natural regeneration in intact soil cores were labelled for one growing season in a greenhouse with 13CO2 and 15NO3 15NH4. The specific enrichments of 15N and 13C were higher in ectomycorrhizas (EMs) than in any other tissue. The enrichments of 13C and 15N were also higher in the fine-root segments directly connected with the EM (mainly second-order roots) than that in bulk fine or coarse roots. A strict, positive correlation was found between the specific 15N enrichment in EM and the attached second-order roots. This finding indicates that strong N accumulators provide more N to their host than low N accumulators. A significant correlation was also found for the specific 13C enrichment in EM and the attached second-order roots. However, the specific enrichments for 15N and 13C in EM were unrelated showing that under long-term conditions, C and N exchange between host and EMs are uncoupled. These findings suggest that EM-mediated N flux to the plant is not the main control on carbon flux to the fungus, probably because EMs provide many different services to their hosts in addition to N provision in their natural assemblages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  • Agerer R (1987–2006) Colour Atlas of Ectomycorrhizae. Einhorn Verlag, Schwäbisch Gmünd, Germany

  • Albarracin MV, Six J, Houlton BZ, Bledsoe CS (2013) A nitrogen fertilization field study of carbon-13 and nitrogen-15 transfers in ectomycorrhizas of Pinus sabiniana. Oecologia 173:1439–1450

    Article  PubMed  Google Scholar 

  • Bever JD, Richardson SC, Lawrence BM, Holmes J, Watson M (2009) Preferential allocation to beneficial symbiont with spatial structure maintains mycorrhizal mutualism. Ecol Lett 12:13–21

    Article  PubMed  Google Scholar 

  • Bidartondo MI, Ek H, Wallander H, Söderstrom B (2001) Do nutrient additions alter carbon sink strength of ectomycorrhizal fungi? New Phytol 151:543–550

    Article  CAS  Google Scholar 

  • Corrêa A, Strasser RJ, Martins-Loução MA (2008) Response of plants to ectomycorrhizae in N-limited conditions: which factors determine its variation? Mycorrhiza 18:413–427

    Article  PubMed  Google Scholar 

  • Corrêa A, Hampp R, Magel E, Martins-Loução MA (2011) Carbon allocation in ectomycorrhizal plants at limited optimal N supply: an attempt at unraveling conflicting theories. Mycorrhiza 21:35–51

    Article  PubMed  Google Scholar 

  • Cowden CC, Peterson CJ (2009) A multi-mutualist simulation: applying biological market models to diverse mycorrhizal communities. Ecol Model 220:1522–1533

    Article  CAS  Google Scholar 

  • Druebert C, Lang C, Valtanen K, Polle A (2009) Beech carbon productivity as driver of ectomycorrhizal abundance and diversity. Plant Cell Environ 32:992–1003

    Article  PubMed  CAS  Google Scholar 

  • Eissfeller V, Beyer F, Valtanen K, Hertel D, Maraun M, Polle A, Scheu S (2013) Incorporation of plant carbon and microbial nitrogen into the rhizosphere food web of beech and ash. Soil Biol Biochem 62:76–81

    Article  CAS  Google Scholar 

  • Ek H (1997) The influence of nitrogen fertilization on the carbon economy of Paxillus invotutus in ectomycorrhizal association with Betula pendula. New Phytol 135:133–142

    Article  CAS  Google Scholar 

  • Epron D, Bahn M, Derrien D, Lattanzi FA, Pumpanen J, Gessler A, Högberg P, Maillard P, Dannoura M, Gerant D, Buchmann N (2012) Pulse-labelling trees to study carbon allocation dynamics: a review of methods, current knowledge and future prospects. Tree Physiol 32:776–798

    Article  PubMed  CAS  Google Scholar 

  • Fellbaum CR, Gachomo EW, Beesetty Y, Choudhari S, Strahan GD, Pfeffer PE, Kiers ET, Bücking H (2012) Carbon availability triggers fungal nitrogen uptake and transport in arbuscular mycorrhizal symbiosis. Proc Natl Acad Sci U S A 109:2666–2671

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Geßler A, Jung K, Gasche R, Papen H, Heidenfelder A, Börner E, Metzler B, Augustin S, Hildebrand E, Rennenberg H (2005) Climate and forest management influence nitrogen balance of European beech forests: microbial N transformations and inorganic N net uptake capacity of mycorrhizal roots. Eur J Forest Res 124:95–111

    Article  Google Scholar 

  • Godbold DL, Hoosbeek MR, Lukac M, Cotrufo MF, Janssens IA, Ceulemans R, Polle A, Velthorst EJ, Scarascia-Mugnozza G, Angelis PD, Miglietta F, Peressotti A (2006) Mycorrhizal hyphal turnover as a dominant process for carbon input into soil organic matter. Plant Soil 281:15–24

    Article  CAS  Google Scholar 

  • Guckland A, Jacob M, Flessa H, Thomas FM, Leuschner C (2009) Acidity, nutrient stocks- and organic-matter content in soils of a temperate deciduous forest with different abundance of European beech (Fagus sylvatica L.). J Plant Nutr Soil Sci 172:500–511

    Article  CAS  Google Scholar 

  • Hobbie EA, Högberg P (2012) Nitrogen isotopes link mycorrhizal fungi and plants to nitrogen dynamics. New Phytol 196:367–382

    Article  PubMed  CAS  Google Scholar 

  • Högberg P, Högberg MN, Göttlicher SG, Betson NR, Keel SG, Metcalfe DB, Campbell C, Schindlbacher A, Hurry V, Lundmark T, Linder S, Näsholm T (2008) High temporal resolution tracing of photosynthate carbon from the tree canopy to forest soil microorganisms. New Phytol 177:220–228

    PubMed  Google Scholar 

  • Högberg MN, Briones MJI, Keel SG, Metcalfe DB, Campbell C, Midwood AJ, Thornton B, Hurry V, Linder S, Näsholm T, Högberg P (2010) Quantification of effects of season and nitrogen supply on tree below-ground carbon transfer to ectomycorrhizal fungi and other soil organisms in a boreal pine forest. New Phytol 187:485–493

    Article  PubMed  Google Scholar 

  • Kiers ET, Duhamel M, Beesetty Y, Mensah JA, Franken O, Verbruggen E, Fellbaum CR, Kowalchuk GA, Hart MM, Bago A, Palmer TM, West A, Vandenkoornhuyse P, Jansa J, Bücking H (2011) Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science 333:880–882

    Article  PubMed  CAS  Google Scholar 

  • Kõljalg U, Larsson KH, Abarenkov K, Nilsson RH, Alexander IJ, Eberhardt U, Erland S, Høiland K, Kjøller R, Larsson E, Pennanen T, Sen R, Taylor AFS, Tedersoo L, Vrålstad T, Ursing BM (2005) Unite: a database providing web-based methods for the molecular identification of ectomycorrhizal fungi. New Phytol 166:1063–1068

    Article  PubMed  Google Scholar 

  • Kummel M, Salant SW (2006) The economics of mutualisms: optimal utilization of mycorrhizal mutualistic partners by plants. Ecology 87:892–902

    Article  PubMed  Google Scholar 

  • Lang C (2008) Diversität der Ektomykorrhizen in verschieden artenreichen Laubbaumbeständen im Nationalpark Hainich (Thüringen). Göttinger Forstwissenschaften. Vol 1. Universitätsverlag, Göttingen, p 154

    Google Scholar 

  • Lang C, Polle A (2011) Ectomycorrhizal fungal diversity, tree diversity and root nutrient relations in a mixed central European forest. Tree Physiol 31:531–538

    Article  PubMed  Google Scholar 

  • Lang C, Seven J, Polle A (2011) Host preferences and differential contributions of deciduous tree species shape mycorrhizal species richness in a mixed central European forest. Mycorrhiza 21:297–308

    Article  PubMed  PubMed Central  Google Scholar 

  • Melin E, Nilsson H (1957) Transport of C14 labelled photosynthate to the fungal associate of pine mycorrhiza. Sevensk Bot Tidskr 51:166–186

    CAS  Google Scholar 

  • Näsholm T, Högberg P, Franklin O, Metcalfe D, Keel SG, Campbell C, Hurry V, Linder S, Högberg MN (2013) Are ectomycorrhizal fungi alleviating or aggravating nitrogen limitation of tree growth in boreal forests? New Phytol 198:214–221

    Article  PubMed  Google Scholar 

  • Pena R, Polle A (2014) Attributing functions to ectomycorrhizal fungal identities in assemblages for nitrogen acquisition under stress. ISME J 8:321–330

    Article  PubMed  CAS  Google Scholar 

  • Pena R, Offermann C, Simon J, Naumann PS, Geßler A, Holst J, Dannenmann M, Mayer H, Kögel-Knabner I, Rennenberg H, Polle A (2010) Girdling affects ectomycorrhizal diversity and reveal functional differences of EM community composition in a mature beech forest (Fagus sylvatica). Appl Environ Microbiol 76:1831–1841

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Pena R, Tejedor J, Zeller B, Dannenmann M, Polle A (2013) Interspecific temporal and spatial differences for the acquisition of litter-derived nitrogen of ectomycorrhizal fungal assemblages. New Phytol 199:520–528

    Article  PubMed  CAS  Google Scholar 

  • Rosling A, Lindahl BD, Finlay RD (2004a) Carbon allocation to ectomycorrhizal roots and mycelium colonising different mineral substrates. New Phytol 162:795–802

    Article  Google Scholar 

  • Rosling A, Lindahl BD, Taylor AFS, Finlay RD (2004b) Mycelial growth and substrate acidification of ectomycorrhizal fungi in response to different minerals. FEMS Microbiol Ecol 47:31–37

    Article  PubMed  CAS  Google Scholar 

  • Wallander H, Johansson L, Pallon J (2002) Pixe analysis to estimate the elemental composition of ectomycorrhizal rhizomorphs grown in contact with different minerals in forest soil. FEMS Microbiol Ecol 39:147–156

    Article  PubMed  CAS  Google Scholar 

  • Zeller B, Colin-Belgrand M, Dambrine E, Martin F, Bottner P (2000) Decomposition of 15N-labelled beech litter and fate of nitrogen derived from litter in a beech forest. Oecologia 123:550–559

    Article  Google Scholar 

Download references

Acknowledgments

This project was funded by the Ministry of Science and Culture of Lower Saxony and the ‘Niedersächsisches Vorab’ as part of the Cluster of Excellence ‘Functional Biodiversity Research’. We are grateful to the administration of Hainich National Park for permission to excavate tree saplings within the Hainich forest. We thank J. Dyckmans from the Kompetenzzentrum für Stabile Isotope (KOSI, University of Göttingen) for measuring the stable isotopes.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Polle.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Online Resource 1

(PDF 23 kb)

Online Resource 2

(PDF 75 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valtanen, K., Eissfeller, V., Beyer, F. et al. Carbon and nitrogen fluxes between beech and their ectomycorrhizal assemblage. Mycorrhiza 24, 645–650 (2014). https://doi.org/10.1007/s00572-014-0581-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-014-0581-8

Keywords

Navigation