Skip to main content
Log in

The analysis of internal transient flow and the performance of valveless piezoelectric micropumps with planar diffuser/nozzles elements

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

The influences of diverging angle, excitation frequency and volume change rate of the pump chamber on the valveless piezoelectric micropump with planar diffuser/nozzle elements are studied. The diverging angle ranges from 5° to 60°, the amplitude of the membrane ranges from 0.5 to 80 μm, the excitation frequency ranges from 10 to 5000 Hz. The deformation model of the membrane is verified by experiments. The performance of the micropump is predicted by numerical simulation. The simulation results agree with the experiment results very well. Statistical analysis of the location and duration of vortexes in internal flow field is used to reveal the relationships among efficiency, diverging angle, frequency and chamber volume change rate. As the frequency ranges from 100 to 1000 Hz, the efficiency increases sharply because the tube is partially blocked by vortexes at suction stage. The vortexes in the diffuser/nozzle elements is brought by the great adverse pressure gradient at the high frequency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Abbreviations

a :

The radius of the central part

b :

The outer radius of the outer region

f :

Excitation frequency

H :

The deep of the diffuser/nozzle element

L :

The length of the diffuser/nozzle element

P in :

The pressure at the inlet

P out :

The pressure at the outlet

q(t):

Transient flow rare

R :

The rounding at the throat

T :

Period

\(\bar{v}\) :

The average velocity at the throat

V :

The volume change of the pump chamber

w 1 :

The deflection of the central part

w 2 :

The deflection of the outer region

w max :

The amplitude of the membrane

W :

The width of the throat

θ :

Diverging angle

ρ :

Density of the medium

η :

Efficiency of the piezoelectric micropump

References

  • Ahn CH, Allen MG (1995) Fluid micropumps based on rotary magnetic actuators. In: Proceedings of IEEE micro electro mechanical systems (MEMS), Amsterdam, Netherlands, pp 408–412

  • Andersson H, Wijngaart W (2001) A valve-less diffuser micropump for microfluidic analytical systems. Sens Actuators B 72:259–265

    Article  Google Scholar 

  • Aravind T, Kumar SP (2013) A novel thermopneumatic based micropump and microvalve using phase change liquid. 2013 International conference on smart structures and systems (JCSSS-20 13), Chennai, India, pp 66–69

  • Azarbadegan A, Eames I (2011) Computational study of parallel valveless micropumps. Sens Actuators B 158:432–440

    Article  Google Scholar 

  • Bodén R (2006) A polymeric paraffin actuated high-pressure micropump. Sens Actuators A 127:88–93

    Article  Google Scholar 

  • Bu M, Tracy M, Graham E (2003) Design and theoretical evaluation of a novel microfluidic device to be used for PCR. J Micromech Microeng 13:S125–S130

    Article  Google Scholar 

  • Cheng P, Wu HY (2007) Phase-change heat transfer in microsystems. J Heat Transf 129:101–107

    Article  Google Scholar 

  • Dewa AS, Deng K, Ritter DC, Bonham C (1997) Development of LIGA-fabricated, self-priming, inline gear pumps. Transducers’97, Chicago, pp 757–760

  • Gravesen P, Branebjerg J (1993) Microfluidics: a review. J Micromech Microeng 3:168–182

    Article  Google Scholar 

  • Guan YF, Zhang GX, Ren JC (2009) Fabrication and experiment studies of the piezoelectric micropump with saw-tooth microchannel. In: Proceedings-2009 IEEE international conference on intelligent computing and intelligent systems 2, pp 733–737

  • He XH, Cai SC (2014) Transient characteristics of flat-wall diffuser/nozzle elements of valveless piezoelectric micropumps. J Xi’An Jiaotong Univ 48(5):89–95

    Google Scholar 

  • Hsu YC, Le NB (2009) Equivalent electrical network for performance characterization of piezoelectric peristaltic micropump. Microfluid Nanofluid 7:237–248

    Article  Google Scholar 

  • Izzo I, Accoto D, Menciassi A, Schmitt L, Dario P (2007) Modeling and experimental validation of a piezoelectric micropump with novel no-moving-part valves. Sens Actuators A 133:128–140

    Article  Google Scholar 

  • Jiang XN, Zhou ZY (1998) Micronozzle/diffuser flow and its application in micro valveless pumps. Sens Actuators A 70:81–87

    Article  Google Scholar 

  • Kuo CT, Liu CH (2009) A bubble-free AC electrokinetic micropump using the asymmetric capacitance-modulated microelectrode array for microfluidic flow control. J Microelectromech Syst 18(1):38–51

    Article  Google Scholar 

  • Lu F, Xie LY (2005) Investigation and application on micropump. Fluid Mach 33(6):29–34

    Google Scholar 

  • Menter FR, Kuntz M, Langtry R (2003) Ten years of industrial experience with the SST turbulence model. In: Proceedings of the 4th international symposium on turbulence, heat and mass transfer, Antalya, Turkey, 12–17 October, 2003, pp 625–663

  • Nguyen NT, Huang X, Chuan TK (2002) MEMS-micropumps: a review. Trans ASME J Fluids Eng 124:384–392

    Article  Google Scholar 

  • Olsson A, Stemme G (2000) Numerical and experimental studies of flat-walled diffuser elements for valve-less micropumps. Sens Actuators 84:165–175

    Article  Google Scholar 

  • Olsson A, Stemme G, Stemme E (1995) A valve-less planar fluid pump with two pump chambers. Sens Actuators A 47:549–556

    Article  Google Scholar 

  • Peng XF, Peterson GP, Wang BX (1994) Frictional flow characteristics of water flowing through rectangular microchannels. Exp Heat Transf 7:249–264

    Article  Google Scholar 

  • Singhal V, Garimella SV (2004) Low Reynolds number flow through nozzle-diffuser elements in valveless micropumps. Sens Actuators A 113:226–235

    Article  Google Scholar 

  • Singhal V, Garimella SV, Raman A (2004) Microscale pumping technologies for microchannel cooling systems. Appl Mech Rev 57(3):191–221

    Article  Google Scholar 

  • Yang S, Yuan SQ, Cai SC, Wei DD, He XH (2014) A valveless piezoelectric micropump based on Coanda effect. Trans Chin Soc Agric Mach 45:343–348

    Google Scholar 

  • Spencer WJ (1978) An electronically controlled piezo-electric insulin pump and valves. IEEE Trans Sonics Ultrason 25(3):153–156

    Article  Google Scholar 

  • Stemme E, Stemme G (1993) A valveless diffuser/nozzle fluid pump. Sens Actuators A 39:159–167

    Article  Google Scholar 

  • Su YF, Chen WY (2006) Electro-magnetically actuated valveless micropump with two flexible diaphragms. Int J Adv Manuf Technol 30:215–220

    Article  Google Scholar 

  • Tanaka S, Tsukamoto H (2008) Development of diffuser/nozzle based valveless micropump. J Fluid Sci Technol 3(8):999–1007

    Article  Google Scholar 

  • Wang CT, Chen YM (2014) Tesla valves in micromixers. Int J Chem React Eng 12(1):397–403

    Google Scholar 

  • Wang YC, Hsu JC (2009) Loss characteristics and flow rectification property of diffuser valves for micropump applications. Int J Heat Mass Transf 52:328–336

    Article  MATH  Google Scholar 

  • Wang XY, Cheng C (2009) Electroosmotic pumps and their applications in microfluidic systems. Microfluid Nanofluid 6:145–162

    Article  Google Scholar 

  • Yuan SQ, Yang S (2015) Design and experimental study of a novel three-way diffuser/nozzle elements employed in valveless piezoelectric micropumps. J Braz Soc Mech Sci Eng 37:221–230

    Article  Google Scholar 

  • Zhang T, Wang QM (2005) Valveless piezoelectric micropump for fuel delivery in direct methanol fuel cell (DMFC) devices. J Power Sources 140:72–80

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the project of the National Natural Science Foundation of China [Grant Number: 51276082]. Departments of Education and Finance, Jiangsu Province of P.R. China (A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education institutions, PAPD) [Grant Number: SUZHENGBANFA (2014) No. 37].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiuhua He.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, X., Zhu, J., Zhang, X. et al. The analysis of internal transient flow and the performance of valveless piezoelectric micropumps with planar diffuser/nozzles elements. Microsyst Technol 23, 23–37 (2017). https://doi.org/10.1007/s00542-015-2695-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-015-2695-0

Keywords

Navigation