Skip to main content
Log in

Characterizations of nanospheres and nanorods using resistive-pulse sensing

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

Nanoparticles, such as colloids, liposomes, and extracellular vesicles, have important roles in a wide range of processes and applications. The detection and characterization of nanoparticles remain technological hurdles because of the small size of nanoparticles, especially when they are heterogeneous. Resistive-pulse sensing technology measures nanoparticles on a single-particle basis. We investigate multiple parameters, including shape and size of the nanoparticles and pores, affecting the transmembrane, blockade of ion current, or the resistive pulse. Finite-element simulations and experimental results agreed reasonable well with each other when monodisperse carboxylated polystyrene nanospheres were used. Compared to using a cylindrical pore, resistive pulses of larger magnitudes were generated using a conical pore of the same diameter. In addition, analyses of the resistive pulse provided information on the shape of nanoparticles, such as spheres or cylinders. This methodology, we believe, open opportunities to improve the characterization of nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Branton D et al (2008) The potential and challenges of nanopore sequencing. Nat Biotechnol 26:1146–1153. doi:10.1038/Nbt.1495

    Article  Google Scholar 

  • Deblois RW, Bean CP (1970) Counting and sizing of submicron particles by resistive pulse technique. Rev Sci Instrum 41:909. doi:10.1063/1.1684724

    Article  Google Scholar 

  • Deblois RW, Bean CP, Wesley RKA (1977) Electrokinetic measurements with submicron particles and pores by resistive pulse technique. J Colloid Interface Sci 61:323–335. doi:10.1016/0021-9797(77)90395-2

    Article  Google Scholar 

  • Dekker C (2007) Solid-state nanopores. Nat Nanotechnol 2:209–215. doi:10.1038/nnano.2007.27

    Article  Google Scholar 

  • Fraikin J-L, Teesalu T, McKenney CM, Ruoslahti E, Cleland AN (2011) A high-throughput label-free nanoparticle analyser. Nat Nanotechnol 6:308–313. doi:10.1038/nnano.2011.24

    Article  Google Scholar 

  • Gardiner C, Ferreira YJ, Dragovic RA, Redman CW, Sargent IL (2013) Extracellular vesicle sizing and enumeration by nanoparticle tracking analysis. J Extracell Vesicles 2:19671

    Article  Google Scholar 

  • Garza-Licudine E, Deo D, Yu S, Uz-Zaman A, Dunbar WB (2010) Portable nanoparticle quantization using a resizable nanopore instrument—the Izon qNano(). Conf Proc IEEE Eng Med Biol Soc 2010:5736–5739. doi:10.1109/IEMBS.2010.5627861

    Google Scholar 

  • Ito T, Sun L, Bevan MA, Crooks RM (2004) Comparison of nanoparticle size and electrophoretic mobility measurements using a carbon-nanotube-based coulter counter, dynamic light scattering, transmission electron microscopy, and phase analysis light scattering. Langmuir 20:6940–6945. doi:10.1021/la049524t

    Article  Google Scholar 

  • Kozak D, Anderson W, Vogel R, Trau M (2011) Advances in resistive pulse sensors: devices bridging the void between molecular and microscopic detection. Nano Today 6:531–545. doi:10.1016/j.nantod.2011.08.012

    Article  Google Scholar 

  • Kozak D, Anderson W, Vogel R, Chen S, Antaw F, Trau M (2012) Simultaneous sise and zeta-potential measurements of individual nanoparticles in dispersion using size-tunable pore sensors. ACS Nano 6:6990–6997. doi:10.1021/nn3020322

    Article  Google Scholar 

  • Lee CY, Hsiao YH, Yu JC, Hsu CW, Hsu CH, Chen C (2014) Measurement and modeling of M13 bacteriophages transport in conical-shaped nanopores. ECS Trans 64:51–56

    Article  Google Scholar 

  • Li Y-Q, Zheng Y-B, Zare RN (2012) Electrical, optical, and docking properties of conical nanopores. ACS Nano 6:993–997. doi:10.1021/nn300356d

    Article  Google Scholar 

  • Menestrina J, Yang C, Schiel M, Vlassiouk I, Siwy ZS (2014) Charged particles modulate local ionic concentrations and cause formation of positive peaks in resistive-pulse-based detection. J Phys Chem C 118:2391–2398. doi:10.1021/jp412135v

    Article  Google Scholar 

  • Roberts GS, Kozak D, Anderson W, Broom MF, Vogel R, Trau M (2010) Tunable nano/micropores for particle detection and discrimination: scanning ion occlusion spectroscopy. Small 6:2653–2658. doi:10.1002/smll.201001129

    Article  Google Scholar 

  • Roberts GS et al (2012) Tunable pores for measuring concentrations of synthetic and biological nanoparticle dispersions. Biosens Bioelectron 31:17–25. doi:10.1016/j.bios.2011.09.040

    Article  Google Scholar 

  • Sexton LT, Horne LP, Martin CR (2007) Developing synthetic conical nanopores for biosensing applications. Mol BioSyst 3:667–685. doi:10.1039/b708725j

    Article  Google Scholar 

  • van der Pol E et al (2014) Particle size distribution of exosomes and microvesicles determined by transmission electron microscopy, flow cytometry, nanoparticle tracking analysis, and resistive pulse sensing. J Thromb Haemost 12:1182–1192. doi:10.1111/jth.12602

    Article  Google Scholar 

  • Varga Z, Yuana Y, Grootemaat AE, van der Pol E, Gollwitzer C, Krumrey M, Nieuwland R (2014) Towards traceable size determination of extracellular vesicles. J Extracell Vesicles 3:23298

    Article  Google Scholar 

  • Vogel R et al (2011) Quantitative sizing of nano/microparticles with a tunable elastomeric pore sensor. Anal Chem 83:3499–3506. doi:10.1021/Ac200195n

    Article  Google Scholar 

  • Willmott GR et al (2010) Use of tunable nanopore blockade rates to investigate colloidal dispersions. J Phys Condens Matter. doi:10.1088/0953-8984/22/45/454116

    Google Scholar 

  • Zhang H, Chon CH, Pan X, Li D (2009) Methods for counting particles in microfluidic applications. Microfluid Nanofluidics 7:739–749. doi:10.1007/s10404-009-0493-7

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the Taiwan National Science Council grants-NSC 99-2320-B-007–005-MY2 (CC) and 101-2221-E-007-101-MY3 (CC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chihchen Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, CY., Chen, C. Characterizations of nanospheres and nanorods using resistive-pulse sensing. Microsyst Technol 23, 299–304 (2017). https://doi.org/10.1007/s00542-015-2481-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-015-2481-z

Keywords

Navigation