Skip to main content

Advertisement

Log in

Modeling of mechanical resonators used for nanocrystalline materials characterization and disease diagnosis of HIVs

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

The modeling and performance of mechanical resonators used for mass detection of bio-cells, nanocrystalline materials characterization, and disease diagnosis of human immune-viruses (HIVs) are investigated. To simulate the real behavior of these mechanical resonators, a novel distributed-parameter model based on Euler–Bernoulli beam theory is developed. This model is equipped with a micromechanical model and an atomic lattice model to capture the inhomogeneity nature of the material microstructure. Compared with lumped-parameter model predictions, the results show that this developed model best fits with the real behavior of the mechanical resonators when detecting the mass of vaccinia virus. In terms of material characterization, the developed model gives very good estimations for the densities and Young’s moduli of the grain boundary of both the nanocrystalline silicon and nanocrystalline diamond. For disease diagnosis, it is shown that the number of human immune-deficiency virus particles in a liquid sample can be easily detected when using the proposed model. The results also show that the developed model is beneficial and can be used to design mechanical resonators made of nanocrystalline materials with the ability to control the resonators’ sizes and the material structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Aboelkassem Y, Nayfeh AH, Ghommem M (2010) Bio-mass sensor using an electrostatically actuated microcantilever in a vacuum microchannel. Microsyst Technol 16:1749–1755

    Article  Google Scholar 

  • Binnig G, Quate CF, Gerber C (1986) Atomic force microscope. Rev Lett 56:930

    Article  Google Scholar 

  • Boccaccini AR, Ondracek G, Mazilu P, Windelberg D (1993) On the effective Young’s modulus of elasticity for porous materials: microstructure modelling and comparison between calculated and experimental values. J Mech Behav Mater 4:119–132

    Article  Google Scholar 

  • Darsanaki PK, Azizzadeh A, Nourbakhsh M, Raeisi G, Aliabadi MA (2013) Biosensors: functions and applications. J Biol 2:53–61

    Google Scholar 

  • Douek DC, Roederer M, Koup RA (2009) Emerging concepts in the immunopathogenesis of AIDS. Annu Rev Med 60:471–484

    Article  Google Scholar 

  • Duan HL, Wang J, Huang ZP, Karihaloo BL (2005) Size-dependent effective elastic constants of solids containing nano-inhomogeneities with interface stress. J Mech Phys Solids 53:1574–1596

    Article  MathSciNet  MATH  Google Scholar 

  • Fitzsimmons MR, Roll A, Burkel E, Sichafus KE, Nastasi MA, Smith GS, Rynn R (1995) The magnetization of a grain boundary in nickel. Nanostruct Mater 6:539–542

    Article  Google Scholar 

  • Fougere GE, Riester L, Ferber M, Weertman JR, Siegel RW (1995) Young’s modulus of nanocrystalline Fe measured by nanoindentation. Mater Sci Eng, A 204:1–6

    Article  Google Scholar 

  • Fritz J et al (2000) Translating biomolecular recognition into nanomechanics. Science 288:316–318

    Article  Google Scholar 

  • Furth R (1944) On the equation of state for solids. Proc R Soc A 183:57

    Article  Google Scholar 

  • Ghatkesar MK, Barwich V, Braun T, Bredekamp AH, Drechsler U, Despont M, Lang HP, Hegner M, Gerber C (2004) Real-Time Mass Sensing by Nanomechanical Resonators in Fluid. Sens, Proc IEEE IEEE 2:1060–1063

    Google Scholar 

  • Gleiter H (2000) Nanostructured materials: basic concepts and microstructure. Acta Mater 48:1–29

    Article  Google Scholar 

  • Gupta A, Akin D, Bashir R (2004a) Detection of bacterial cells and antibodies using surface micromachined thin silicon cantilever resonators. J Vac Sci Technol, B 22(6):2785–2791

    Article  Google Scholar 

  • Gupta A, Akin D, Bashir R (2004b) Single virus particle mass detection using microresonators with nanoscale thickness. Appl Phys Lett 84(11):1976–1978

    Article  Google Scholar 

  • Hess P (2012) The mechanical properties of various chemical vapor deposition diamond structures compared to the ideal single crystal. J Appl Phys 111:051101

    Article  Google Scholar 

  • Hewa TMP et al (2009) The detection of influenza A and B viruses in clinical specimens using a quartz crystal microbalance. J Virol Methods 162(1–2):14–21

    Article  Google Scholar 

  • Hutchinson AU et al (2004) Dissipation in nanocrystalline-diamond nanomechanical resonators. Appl Phys Lett 84:972–974

    Article  Google Scholar 

  • Ilic B, Yang Y, Craighead HG (2004) Virus detection using nanoelectromechanical devices. Appl Phys Lett 85(13):2604–2606

    Article  Google Scholar 

  • Johnson L, Gupta AK, Ghafoor A, Akin D, Bashir R (2006) Characterization of vaccinia virus particles using microscale silicon cantilever resonators and atomic force microscopy. Sens Actuators B 115:189–197

    Article  Google Scholar 

  • Kim HS, Bush MB (1999) The effects of grain size and porosity on the Elastic modulus of nanocrystalline materials. Nanostruct Mater 11:361–367

    Article  Google Scholar 

  • Lu CH et al (2012) Sensing HIV related protein using epitope imprinted hydrophilic polymer coated quartz crystal microbalance. Biosens Bioelectron 31(1):439–444

    Article  Google Scholar 

  • Mohr M, Caron A, Engel PH, Bennewitz R, Gluche P, Brühne K, Fecht HJ (2014) Young’s modulus, fracture strength, and Poisson’s ratio of nanocrystalline diamond films. J Appl Phys 116:124308

    Article  Google Scholar 

  • Sanders PG, Eastman JA, Weertman JR (1997) Elastic and tensile behavior of nanocrystalline copper and palladium. Acta Mater 45:4019–4025

    Article  Google Scholar 

  • Sekaric L et al (2002) Nanomechanical resonant structures in nanocrystalline diamond. Appl Phys Lett 81:4455–4457

    Article  Google Scholar 

  • Sharma P, Ganti S (2003) On the grain-size-dependent elastic modulus of nanocrystalline materials with and without grain-boundary sliding. J Mater Res 18(8):1823–1826

    Article  Google Scholar 

  • Shen TD, Koch CC, Tsui TY, Pharr GM (1995) On the elastic moduli of nanocrystalline Fe, Cu, Ni, and Cu-Ni alloys prepared by mechanical milling/alloying. J Mater Res 10:2892–2896

    Article  Google Scholar 

  • Spriggs RM (1961) Expression for effect of porosity on elastic modulus of polycrystalline refractory materials, particularly aluminum oxide. J Am Ceramic Soc 44:628–629

    Article  Google Scholar 

  • Su M, Li S, Dravid VP (2003) Microcantilever resonance-based DNA detection with nanoparticle probes. Appl Phys Lett 82(20):3562–3564

    Article  Google Scholar 

  • Swygenhoven H, Spaczer M, Caro A (1999) Characterisation of the microstructure of nanophase Ni: a molecular dynamics simulation study. Nanostruct Mater 12:629–632

    Article  Google Scholar 

  • Tao Y, Boss JM, Moores BA, Degen CL (2014) Single-crystal diamond nanomechanical resonators with quality factors exceeding one million. Nat Commun. doi:10.1038/ncomms4638

    Google Scholar 

  • Tothill IE (2009) Biosensors for cancer markers diagnosis. Semin Cell Dev Biol 20:55–62

    Article  Google Scholar 

  • Wang N, Wang ZR, Aust KT, Erb U (1995) Effect of grain size on mechanical properties of nanocrystalline materials. Acta Metall Mater 43:519–528

    Article  Google Scholar 

  • Wang GF, Feng XQ, Yu SW, Nan CW (2003) Interface effects on effective elastic moduli of nanocrystalline materials. Mater Sci Eng, A 363:1–8

    Article  Google Scholar 

  • Weiss RA (1993) How does HIV cause AIDS? Science 260(5112):1273–1279

    Article  Google Scholar 

  • Xing LQ, Bertrand C, Dallas JP, Cornet M (1998) Nanocrystal evolution in bulk amorphous Zr57Cu20Al10Ni8Ti5 alloy and its mechanical properties. Mater Sci Eng, A 241:216–225

    Article  Google Scholar 

  • Zhou J, Li Y, Zhu R, Zhang Z (2007) The grain size and porosity dependent elastic moduli and yield strength of nanocrystalline ceramics. Mater Sci Eng, A 445–446:717–724

    Article  Google Scholar 

  • Zhu P et al (2003) Electron tomography analysis of envelope glycoprotein trimers on HIV and simian immunodeficiency virus virions. PNAS 100(26):15812–15817

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdessattar Abdelkefi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shaat, M., Abdelkefi, A. Modeling of mechanical resonators used for nanocrystalline materials characterization and disease diagnosis of HIVs. Microsyst Technol 22, 305–318 (2016). https://doi.org/10.1007/s00542-015-2421-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-015-2421-y

Keywords

Navigation