Skip to main content
Log in

Research on hot embossing process of high fill factor microlens array

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

In order to manufacture high fill factor microlens array in batches, this paper researches into gapless hexagonal microlens array manufactured through hot embossing, adopts FEM to calculate the stress of PMMA in hot embossing process of gapless hexagonal high fill factor microlens array, and analyzes the influencing factors of adhesion strength between the die and PMMA. The analysis result reveals that with the decrease of hot demolding temperature, the normal stress of PMMA drops gradually (the minimum stress exists) and that adhesion stress between the mold and PMMA will decline with the decrease of normal stress in PMMA, and that when demolding temperature drops to 20 °C, the height fidelity of microlens arrays reaches 94.7 %, which eliminates the defects in embossing and forming on a large scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Beck M, Graczyk M, Maximov I et al (2002) Improving stamps for 10 nm level wafer scale nanoimprint lithography. Microelectron Eng 61–62:441–448

    Article  Google Scholar 

  • Chou SY, Krauss PR, Renstrom PJ (1995) Imprint of Sub-25 nm vias and trenches in polymers. Appl Phys Lett 67(21):3114–3116

    Article  Google Scholar 

  • Dengfeng K, Xiaoliang Z, Min G et al (2009) Hexagonal microlens array fabricated by direct laser writing and inductively coupled plasma etching on organic light emitting devices to enhance the outcoupling efficiency. Appl Opt 48(5):974–978

    Article  Google Scholar 

  • Dirckx ME, Hardt DE (2011) Analysis and characterization of demolding of hot embossed polymer microstructures. J Micromec Microeng 21(8):085024

    Article  Google Scholar 

  • Feng C, Hewei L, Qing Y et al (2010) Maskless fabrication of concave microlens arrays on silica glasses by a femtosecond-laser-enhanced local wet etching method. Opt Expr 18(19):20334–20343

    Article  Google Scholar 

  • Gordon NT, Jones CL, Purdy DJ (1991) Application of microlenses to infrared detector arrays. Infrared Phys 31(6):599–604

    Article  Google Scholar 

  • Gun-Young J, Zhiyong L, Wei W et al (2005) Vapor-phase self-assembled monolayer for improved mold release in nanoimprint lithography. Langmuir 21(4):1158–1161

    Article  Google Scholar 

  • Haochen M (2005) The research on surface effect and size effect of adhesion in MEMS (micro electro mechanical system). Jiangsu University, Zhenjiang

    Google Scholar 

  • Hewei L, Chen F, Yang Q et al (2012) Fabrication of bioinspired omnidirectional and gapless microlens array for wide field-of-view detections. Appl Phys Lett 100(13):133701–133703

    Article  Google Scholar 

  • Kim NW, Kim KW, Sin HC (2008) Finite element analysis of low temperature thermal nanoimprint lithography using a viscoelastic model. Microelectron Eng 85(9):1858–1865

    Article  Google Scholar 

  • Lan S, Lee HJ, Lee SH et al (2009) Experimental and numerical study on the viscoelastic property of polycarbonate near glass transition temperature for micro thermal imprint process. Mater Des 30(9):3879–3884

    Article  Google Scholar 

  • Liu H, Chen F, Yang Q et al (2012) Facile and flexible fabrication of gapless microlens arrays using a femtosecond laser microfabrication and replication process. In: Proceeding SPIE8243, laser applications in microelectronic and optoelectronic manufacturing, vol 1. San Francisco, pp 2430–2436

  • Maokuo W, Su IL (2004) Method to evaluate the enhancement of luminance efficiency in planar OLED light emitting devices for microlens array. Opt Expr 12(23):5777–5782

    Article  Google Scholar 

  • Mirkhalaf M, Tor SB, Murukeshan VM et al (2010) Optimization of compression molding of stand-alone microlenses: simulation and experimental results. Polym Eng Sci 50(11):2216–2228

    Article  Google Scholar 

  • Pan CT, Su CH (2007) Fabrication of gapless triangular micro-lens array. Sens Actuators A Phys 134(2):631–640

    Article  Google Scholar 

  • Shuai C, Duan J, Zhong J (2006) Novel manufacturing method of optical fiber coupler. J Cent South Univ Technol 13(3):242–246

    Article  Google Scholar 

  • Stevens R, Miyashita T (2010) Review of standards for microlenses and microlens arrays. Imaging Sci J 58(4):202–212

    Article  Google Scholar 

  • Tao W, Yue Y, Lei L (2013) Study on rheological properties of transparent plastic melt. Eng Plast Appl 41(4):71–74

    Google Scholar 

  • Worgull M, Heckele M, Hetu JF et al (2006) Modeling and optimization of the hot embossing process for micro- and nanocomponent fabrication. J Microlithogr Microfabr Microsyst 5(1):1005–1013

    Google Scholar 

  • Yuhua G, Gang L, Xuelin Z et al (2007) Analysis of the demolding forces during hot embossing. Microsyst Technol 5(13):411–415

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiqing Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Zhang, Q., Kuang, X. et al. Research on hot embossing process of high fill factor microlens array. Microsyst Technol 21, 2109–2114 (2015). https://doi.org/10.1007/s00542-014-2352-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-014-2352-z

Keywords

Navigation