Skip to main content
Log in

Room temperature Si–Ti thermopile THz sensor

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

In this paper, we present the conception, fabrication and characterization of a thermopile designed to detect terahertz electromagnetic fields at room temperature. The thermopile is made of four doped silicon/titanium thermocouples. The absorber consists of a metallic grid made of titanium, deposited at the same time as the metal part of the thermocouples. The design of the grid is based on a theoretical multilayer model using equivalent resistivity and taking into account small diffraction effects. The grid is deposited on a 2.4 mm × 2.4 mm silicon nitride square membrane. The time constant of the sensor is measured at 0.3 THz to be 10 ms, which is consistent with finite elements simulations. The responsivity is evaluated at 4.8 μV/(W m−2). Due to a large impedance, which leads to a large Johnson noise, the noise equivalent power is 1.5 × 10−6 W Hz−1/2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Appleby R, Wallace HB (2007) Standoff detection of weapons and contraband in the 100 GHz to 1 THz region. IEEE Trans Antennas Propag 55(11):2944–2956

    Article  Google Scholar 

  • Baron T, Euphrasie S, Mbarek SB, Vairac P, Cretin B (2009) Design of metallic mesh absorbers for high bandwidth electromagnetic waves. Prog Electromag Res C 8:135–147

    Article  Google Scholar 

  • Ben Mbarek S, Euphrasie S, Baron T, Thiery L, Vairac P, Cretin B, Guillet JP, Chusseau L (2013) Room temperature thermopile THz sensor. Sens Actuators A: Phys 193:155–160

    Article  Google Scholar 

  • Bock JJ, Chen D, Mauskopf PD, Lange AE (1995) A novel bolometer for infrared and millimeter-wave astrophysics. Space Sci Rev 74(1–2):229–235

    Article  Google Scholar 

  • Briand D, Teyssieux D, Courbat J, Thiery L, Cretin B, de Rooij N (2008) On the thermal simulation and characterisation of microsystems: progress and status. Eurosensors XXII, Dresden, vol 1, pp 133–136

  • Chen Q, Zhang XC (2001) Semiconductor dynamic aperture for near-field terahertz wave imaging. IEEE J Sel Top Quantum Electronics 7(4):608–614

    Article  Google Scholar 

  • Geballe T, Hull G (1955) Seebeck effect in silicon. Phys Rev 98(4):940–947

    Article  Google Scholar 

  • Hadley LN, Dennison DM (1947) Reflection and transmission interference filters. J Opt Soc Am 37(6):451

    Article  Google Scholar 

  • Han PY, Cho GC, Zhang XC (2000) Time-domain transillumination of biological tissues with terahertz pulses. Opt Lett 25(4):242

    Article  Google Scholar 

  • Hilsum C (1954) Infrared absorption of thin metal films. J Opt Soc Am 44(3):188

    Article  Google Scholar 

  • Hu BB, Nuss MC (1995) Imaging with terahertz waves. Opt Lett 20(16):1716

    Article  Google Scholar 

  • Mbarek S, Baron T, Euphrasie S, Cretin B, Vairac P, Adam R, Chusseau L, Guillet J, Penarier A (2009) Theoretical and experimental studies of metallic grids absorption: application to the design of a bolometer. Procedia Chem 1(1):1135–1138

    Article  Google Scholar 

  • Siegel P (2002) Terahertz technology. IEEE Trans Microwave Theory Tech 50(3):910–928

    Article  Google Scholar 

  • Sizov F, Rogalski A (2010) THz detectors. Progr Quantum Electronics 34(5):278–347

    Article  Google Scholar 

  • Thiery L, Briand D, Odaymat A, de Rooij N (2004) Contribution of scanning probe temperature measurements to the thermal analysis of micro-hotplates. Therminic 2004. Sophia Antipolis, France, pp 23–28

    Google Scholar 

  • Thiery L, Toullier S, Teyssieux D, Briand D (2008) Thermal contact calibration between a thermocouple probe and a microhotplate. J Heat Transfer 130(9):091,601

  • Thiery L, Gavignet E, Cretin B (2009) Two omega method for active thermocouple microscopy. Rev Sci Instrum 80(3):034,901.

  • Tonouchi M (2007) Cutting-edge terahertz technology. Nature Photon 1(2):97–105

    Article  Google Scholar 

  • Tonouchi M (2009) Galore new applications of terahertz science and technology. Terahertz Sci Technol 2(3):90–101

    Google Scholar 

  • Ulrich R (1967) Far-infrared properties of metallic mesh and its complementary structure. Infrared Phys 7(1):37–55

    Article  Google Scholar 

  • Yu C, Fan S, Sun Y, Pickwell-MacPherson E (2012) The potential of terahertz imaging for cancer diagnosis a review of investigations to date. Quant Imaging Med Surg 2:33–45

    Google Scholar 

Download references

Acknowledgments

This work was supported by the French National Agency (ANR) through the Project TERASCOPE No. ANR-06-BLAN-0073-02.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sébastien Euphrasie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ben Mbarek, S., Euphrasie, S., Baron, T. et al. Room temperature Si–Ti thermopile THz sensor. Microsyst Technol 21, 1627–1631 (2015). https://doi.org/10.1007/s00542-014-2252-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-014-2252-2

Keywords

Navigation