Skip to main content
Log in

Dielectric materials for electrowetting-on-dielectric actuation

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

The fundamental building blocks of typical electrowetting-on-dielectric (EWOD) actuation and their importance in the EWOD mechanism are introduced and reviewed, respectively. The emphasis in this experimental study of EWOD is on dielectric materials, upon which the performance of EWOD devices is heavily dependent. Dielectric breakdown of several typical polymeric and inorganic insulators employed as dielectrics for EWOD has been analytically investigated, which is forced to occur between the electrodes and conductive liquids under certain threshold potential. The electric breakdown occurring in both dielectric layer and surrounding medium (air or silicon oil) has been studied to build up a mathematical model of breakdown voltage as a function of dielectric thickness. Contact angle measurement of some polymeric materials and self-assembled monolayer using pure water has been carried out to demonstrate the contact angle tunability and reversibility, respectively, upon EWOD actuation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Acharya BR, Krupenkin T, Ramachandran S, Wang Z, Huan CC, Rogers JA (2003) Tunable optical fiber devices based on broadband long-period gratings and pumped microfluidics. Appl Phys Lett 83:4912–4914

    Article  Google Scholar 

  • Bain CD, Barry E et al (1989) Formation of monolayer films by the spontaneous assembly of organic thiols from solution onto gold. J Am Chem Soc 111:321–335

    Article  Google Scholar 

  • Belaubre P, Guirardel M et al (2004) Cantilever-based microsystem for contact and non-contact deposition of picoliter biological samples. Sens Actuators A Phys 110:130–135

    Article  Google Scholar 

  • Beni G, Hackwood S (1981) Electrto-wetting displays. Appl Phys Lett 38:207–209

    Article  Google Scholar 

  • Berge B (1993) Electrocapillarite et mouillage de films isolants par l’eau. C R Acad Sci II 317:157–163

    Google Scholar 

  • Berge B, Peseux P (2000) Variable focal lens controlled by an external voltage: an application of electrowetting. Eur Phys J E Soft Matter 3:159–163

    Article  Google Scholar 

  • Bienia M, Quilliet C, Vallade M (2003) Modification of drop shape controlled by electrowetting. Langmuir 19:9328–9333

    Article  Google Scholar 

  • Bonn NS, Rafai S, Aza A, Daniel B (2006) Evaporating droplets. J Fluid Mech 549:307–313

    Article  Google Scholar 

  • Chang YW, Kwok DY (2004) Electrowetting on dielectric: a low voltage study on self-assembled monolayers and its wetting kinetics. In: Proceedings of the 2004 international conference on MEMS, NANO and Smart Systems (ICMENS’04), 66–71

  • Chang CY, Sze SM (eds) (1996) ULSI technology. McGraw Hill Co. Inc., New York

    Google Scholar 

  • Cheng JY, Hsiung LC (2004) Electrowetting (EW)-based valve combined with hydrophilic teflon microfluidic guidance in controlling continuous fluid flow. Biomed Microdev 6:341–347

    Article  Google Scholar 

  • Cho SK, Moon H, Kim CJ (2003) Creating, transporting, cutting and merging liquid droplets by electrowetting-based actuation for digital microfluidic circuits. J MEMS 12:70–80

    Google Scholar 

  • Darhuber AA, Troian SM (2005) Principles of microfluidic actuation by modulation of surface stresses. Annu Rev Fluid Mech 37:425–455

    Article  MathSciNet  Google Scholar 

  • Dharmatilleke S, Liu H (2006) Systems and methods for pumping continuous liquid columns using hydrophobicity control features in a microchannel. International publication no. WO2006115464 A1

  • Gorman CB, Biebuyck HA, Whitesides GM (1995) Control of the shape of liquid lenses on a modified gold surface using an applied electrical potential across a self-assembled monolayer. Langmuir 11:2242–2246

    Article  Google Scholar 

  • Hayes RA, Feenstra BJ (2003) Video-speed electronic paper based on electrowetting. Nature 425:383–385

    Article  Google Scholar 

  • Hoshino K, Triteyaprasert S, Matsumoto K, Shimoyama I (2004) Electrowetting-based pico-liter liquid actuation in a glass-tube microinjector. Sens Actuators A 114:473–477

    Article  Google Scholar 

  • Imanaka Y, Shioga T, Baniecki JD (2002) Decoupling capacitor with low inductance for high-frequency digital applications. Fujitsu Sci Tech J 38:22–30

    Google Scholar 

  • King MD, Yang JC, Chien WS, Grosshandler WL (1997) Evaporation of a small water droplet containing an additive. In: Proceedings of the ASME National Heat Transfer Conference, Baltimore, vol 3, 1–6

  • Klauk H, Huang JR, Nichols JA, Jackson TN (2000) Ion-beam deposited ultra-thin transparent metal contacts. Thin Solid Films 366:272–278

    Article  Google Scholar 

  • Klingner A, Buehrle J, Mugele F (2004) Capillary bridges in electric fields. Langmuir 20:6770–6777

    Article  Google Scholar 

  • Krupenkin TN, Taylor JA et al (2004) From rolling ball to complete wetting: the dynamic tuning of liquids on nanostructured surfaces. Langmuir 20:3824–3827

    Article  Google Scholar 

  • Kuiper S, Hendriks BHW (2004) Variable-focus liquid lens for miniature cameras. Appl Phys Lett 85:1128–1130

    Article  Google Scholar 

  • Kuo JS, Mihalic PS, Rodriguez I, Chiu DT (2003) Electrowetting-induced droplet movement in an immiscible medium. Langmuir 19:250–255

    Article  Google Scholar 

  • Lippmann G (1875) Relations entre les ph′enom`enes ′electriques et capillaries. Ann Chim Phys 5:494–549

    Google Scholar 

  • Mach P, Krupenkin T et al (2002) Dynamic tuning of optical waveguides with electrowetting pumps and recirculating fluid channels. Appl Phys Lett 81:202–204

    Article  Google Scholar 

  • Minnema L, Barneveld HA, Rinkel PD (1980) An investigation into the mechanism of water treeing in polyethylene high-voltage cables. IEEE Trans Electr Insulation EI-15:461–472

    Article  Google Scholar 

  • Moon HJ, Cho SK, Garrell RL, Kim CJ (2002) Low voltage electrowetting-on-dielectric. J Appl Phys 92:4080–4087

    Article  Google Scholar 

  • Mugele F, Barget JC (2005) Electrowetting: from basic to applications. J Phys Condens Matter 17:705–774

    Article  Google Scholar 

  • Mugele F, Herminghaus S (2002) Electrostatic stabilization of fluid microstructures. Appl Phys Lett 81:2303–2305

    Article  Google Scholar 

  • Mugele F, Klingner A, Buehrle J, Steinhauser D, Herminghaus S (2005) Electrowetting: a convenient way to switchable wettability patterns. J Phys Condens Matter 17:S559–S576

    Article  Google Scholar 

  • Nalwa HS (ed) (1999) Handbook of low and high dielectric constant materials and their applications. Academic Press, San Diego

    Google Scholar 

  • Pollack MG, Shenderov AD, Fair RB (2002) Electrowetting-based actuation of droplets for integrated microfluidics. Lab Chip 2:96–101

    Article  Google Scholar 

  • Prins MWJ, Welters WJJ, Weekamp JW (2001) Fluid control in multichannel structures by electrocapillary pressure. Science 291:277–280

    Article  Google Scholar 

  • Quilliet C, Berge B (2001) Electrowetting: a recent outbreak. Curr Opin Colloid Interface Sci 6:34–39

    Article  Google Scholar 

  • Saeki F, Baum J, Yoon HJ, Kim CJ (2001) Electrowetting on dielectrics (EWOD): reducing voltage requirements for microfluidics. Polym Mater Sci Eng 85:12–13

    Google Scholar 

  • Sondag-Huethorst JAM, Fokkink LGJ (1994a) Electrical double layers on thiol-modified polycrystalline gold electrodes. J Electroanal Chem 367:49–57

    Article  Google Scholar 

  • Sondag-Huethorst JAM, Fokkink LGJ (1994b) Potential-dependent wetting of electroactive ferrocene-terminated alkanethiolate monolayers on gold. Langmuir 10:4380–4387

    Article  Google Scholar 

  • Srinivasan V, Pamula VK, Fair RB (2004) An integrated digital microfluidic lab-on-a-chip for clinical diagnostic on human physiological fluids. Lab Chip 4:310–315

    Article  Google Scholar 

  • Sung MM, Kluth GJ, Maboudian R (1999) Formation of alkylsiloxane self-assembled monolayers on Si3N4. J Vac Sci Technol A 16:540–544

    Article  Google Scholar 

  • Tan OK, Fang XY et al (2005) Immobilization of bovine serum albumin on self-assembled monolayer modified dielectric film for biosensor application. Sensors IEEE, 30 Oct–3 Nov:397–400

  • Thomas RR (1996) Wettability of polished silicon oxide surfaces. J Electrochem Soc 143:643–648

    Article  Google Scholar 

  • Vallet M, Berge B, Vovelle L (1996) Electrowetting of water and aqueous solutions on poly(ethylene terephthalate) insulating films. Polymer 37:2465–2470

    Article  Google Scholar 

  • Vallet M, Vallade M, Berge B (1999) Limiting phenomena for the spreading of water on polymer films by electrowetting. Eur Phys J B11:583–591

    Google Scholar 

  • Verheijen HJJ, Prins MWJ (1999) Reversible electrowetting and trapping of charge: model and experiments. Langmuir 15:6616–6620

    Article  Google Scholar 

  • Welters WJJ, Fokkink LGJ (1998) Fast electrically switchable capillary effects. Langmuir 14:1535–1538

    Article  Google Scholar 

  • Wheeler AR, Moon HJ et al (2004) Electrowetting-based microfluidics for analysis of peptides and proteins by matrix-assisted laser desorption/ionization mass spectrometry. Anal Chem 76:4833–4838

    Article  Google Scholar 

  • Yi UC, Kim CJ (2004) Soft printing of droplets pre-metered by electrowetting. Sens Actuators A 114:347–354

    Article  Google Scholar 

  • Yoon JY, Garrell RL (2003) Preventing biomolecular adsorption in electrowetting-based biofluidic chips. Anal Chem 75:5097–5102

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Institute of Materials Research and Engineering (IMRE) and Agency for Science, Technology and Research (A*STAR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, H., Dharmatilleke, S., Maurya, D.K. et al. Dielectric materials for electrowetting-on-dielectric actuation. Microsyst Technol 16, 449–460 (2010). https://doi.org/10.1007/s00542-009-0933-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-009-0933-z

Keywords

Navigation