Skip to main content

Advertisement

Log in

Microfluidic devices for sample pretreatment and applications

  • Review Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

With the fundamentals of microscale flow and species transport well developed, the recent trend in microfluidics has been to work towards the devices capable of dealing with ‘real’ crude samples directly. Before the real samples reaching the analytical step, it nearly requires significant pre-treated steps. Development of these microdevices that perform sample preprocessing steps is now underway for a broad range of application areas from on-chip DNA analysis, immunoassays to cytometry. This article provides an overview of the latest developments in microfluidic devices for sample pretreatment. Many of the microchips are being designed for individual preprocessing steps, but integration of multiple sample preparation steps has been shown, along with integration of sample preprocessing and analytical procedures on single microchips.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Becker FF, Wang X, Huang Y, Pethigt R, Vykoukal J, Gascoyne PRC (1995) Separation of human breast-cancer cells from blood by differential dielectric affinity. Proc Natl Acad Sci USA 92:860–864. doi:10.1073/pnas.92.3.860

    Article  Google Scholar 

  • Belgrader P, Okuzumi M, Pourahmadi F, Borkholder DA, Northrup MA (2000) A microfluidic cartridge to prepare spores for PCR analysis. Biosens Bioelectron 14:849–852. doi:10.1016/S0956-5663(99)00060-3

    Article  Google Scholar 

  • Bergkvist J, Ekstrom S, Wallman L, Lofgren M, Marko-Varga G, Nilsson J, Laurell T (2002) Improved chip design for integrated solid-phase microextraction in on-line proteomic sample preparation. Proteomics 2:422-429. doi:10.1002/1615–9861(200204)2:4<422::AID-PROT422>3.0.CO;2-1

    Google Scholar 

  • Breadmore MC, Wolfe KA, Arcibal IG, Leung WK, Dickson D, Giordano BC, Power ME, Ferrance JP, Feldman SH, Norris PM, Landers JP (2003) Microchip-based purification of DNA from biological samples. Anal Chem 75:1880–1886. doi:10.1021/ac0204855

    Article  Google Scholar 

  • Brody JP, Han Y, Austin RH, Bitensky M (1995) Deformation and flow of red blood cells in a synthetic lattice: evidence for an active cytoskeleton. Biophys J 68:2224–2232

    Article  Google Scholar 

  • Brody JP, Osborn TD, Forster FK, Yager P (1996) A planar microfabricated fluid filter. Sens Actuators A Phys 54:704–708. doi:10.1016/S0924-4247(97)80042-8

    Article  Google Scholar 

  • Bu M, Christensen TB, Smistrup K, Wolff A, Hansen MF (2008) Characterization of a microfluidic magnetic bead separator for high-throughput applications. Sensors Actuators A 145–146:430–436. doi:10.1016/j.sna.2007.12.014

    Article  Google Scholar 

  • Cady NC, Stelick S, Batt CA (2003) Nucleic acid purification using microfabricated silicon structures. Biosens Bioelectron 19:59–66. doi:10.1016/S0956-5663(03)00123-4

    Article  Google Scholar 

  • Carlo DD, Jeong KH, Lee LP (2003) Reagentless mechanical cell lysis by nanoscale barbs in microchannels for sample preparation. Lab Chip 3:287–291. doi:10.1039/b305162e

    Article  Google Scholar 

  • Chang WC, Lee LP, Liepmann D (2005) Biomimetic technique for adhesion-based collection and separation of cells in a microfluidic channel. Lab Chip 5:64–73. doi:10.1039/b400455h

    Article  Google Scholar 

  • Chen X, Cui DF, Liu CC (2007a) Fabrication of DNA purification microchip integrated with mesoporous matrix based on MEMS technology. Microsyst Technol 14(1):51–57. doi:10.1007/s00542-007-0393-2

    Article  Google Scholar 

  • Chen X, Cui DF, Liu CC (2007b) Microfabrication and characterization of porous channels for DNA purification. J Micromech Microeng 17(1):68–75. doi:10.1088/0960-1317/17/1/009

    Article  Google Scholar 

  • Chen X, Cui DF, Liu CC, Li H (2008) Microfluidic chip for blood cell separation and collection based on crossflow filtration. Sensors Actuators B 130:216–221. doi:10.1016/j.snb.2007.07.126

    Article  Google Scholar 

  • Christel LA, Petersen K, McMillan W, Northrup MA (1999) Rapid, automated nucleic acid probe assays using silicon microstructures for nucleic acid concentration. J Biomech Eng Trans ASME 121:22–27. doi:10.1115/1.2798037

    Article  Google Scholar 

  • Crowley TA, Pizziconi V (2005) Isolation of plasma from whole blood using planar microfilters for lab-on-a-chip applications. Lab Chip 5:922–929. doi:10.1039/b502930a

    Article  Google Scholar 

  • Ekstrom S, Malmstrom J, Wallman L, Lofgren M, Nilsson J, Laurell T, Marko-Varga G (2002) On-chip microextraction for proteomic sample preparation of in-gel digests. Proteomics 2:413–421. doi:10.1002/1615-9861(200204)2:4<413::AID-PROT413>3.0.CO;2-1

    Google Scholar 

  • Fu AY, Spence C, Scherer A, Arnold FH, Quake SR (1999) A microfabricated fluorescence-activated cell sorter. Nat Biotechnol 17:1109–1111. doi:10.1038/15095

    Article  Google Scholar 

  • Fu AY, Chou HP, Spence C, Arnold FH, Quake SR (2002) An integrated microfabricated cell sorter. Anal Chem 74:2451–2457. doi:10.1021/ac0255330

    Article  Google Scholar 

  • Gao J, Yin XF, Fang ZL (2004) Integration of single cell injection, cell lysis, separation and detection of intracellular constituents on a microfluidic chip. Lab Chip 4:47–52. doi:10.1039/b310552k

    Article  Google Scholar 

  • Harris NR, Hill M, Beeby S, Shen Y, White NM, Hawkes JJ, Coakley WT (2003) A silicon microfluidic ultrasonic separator. Sens Actuators B Chem 95:425–434. doi:10.1016/S0925-4005(03)00448-9

    Article  Google Scholar 

  • Hisamoto H, Horiuchi T, Uchiyama K, Tokeshi M, Hibara A, Kitamori T (2001) On-chip integration of sequential ion-sensing system based on intermittent reagent pumping and formation of two-layer flow. Anal Chem 73:5551. doi:10.1021/ac0107150

    Article  Google Scholar 

  • Hu XY, Bessette PH, Qian JG, Meinhart CD, Daugherty PS, Soh HT (2005) Marker-specific sorting of rare cells using dielectrophoresis. Proc Natl Acad Sci USA 102:15757–15761. doi:10.1073/pnas.0507719102

    Article  Google Scholar 

  • Hu G, Lee JSH, Li D (2006) A microfluidic fluorous solid-phase extraction chip for purification of amino acids. J Colloid Interface Sci 301:697–702. doi:10.1016/j.jcis.2006.05.019

    Article  Google Scholar 

  • Inglis DW, Riehn R, Austin RH, Sturm JC (2004) Continuous microfluidic immunomagnetic cell separation. Appl Phys Lett 85:5093–5095. doi:10.1063/1.1823015

    Article  Google Scholar 

  • Jiang G, Harrison DJ (2000) mRNA isolation in a microfluidic device for eventual integration of cDNA library construction. Analyst (Lond) 125:2176–2179. doi:10.1039/b005999o

    Article  Google Scholar 

  • Kim AS, Hoek EMV (2002) Cake structure in dead-end membrane filtration: monte carlo simulations. Environ Eng Sci 19:373–386. doi:10.1089/109287502320963373

    Article  Google Scholar 

  • Kutter JP, Jacobson SC, Ramsey JM (2000) Solid phase extraction on microfluidic devices. J Microcol 12:93–97. doi:10.1002/(SICI)1520-667X(2000)12:2<93::AID-MCS5>3.0.CO;2-P

    Google Scholar 

  • Lee SW, Tai YC (1999) A micro cell lysis device. Sensors Actuators A 73:74–79. doi:10.1016/S0924-4247(98)00257-X

    Article  Google Scholar 

  • Lee EZ, Huh YS, Jun YS, Won HJ, Hong YK, Park TJ, Lee SY, Hong WH (2008) Removal of bovine serum albumin using solid-phase extraction with in situ polymerized stationary phase in a microfluidic device. J Chromatogr A 1187:11–17. doi:10.1016/j.chroma.2008.01.084

    Article  Google Scholar 

  • Li PC, Harrison DJ (1997) Transport, manipulation, and reaction of biological cells on chip using electrokinetic effects. Anal Chem 69:1564–1568. doi:10.1021/ac9606564

    Article  Google Scholar 

  • Lin YC, Jen CM, Huang MY, Wu CY, Lin XZ (2001) Electroporation microchips for continuous gene transfection. Sens Actuators B Chem 79:137–143. doi:10.1016/S0925-4005(01)00859-0

    Article  Google Scholar 

  • Lu H, Schmidt MA, Jensen KF (2005) A microfluidic electroporation device for cell lysis. Lab Chip 5:23–29. doi:10.1039/b406205a

    Article  Google Scholar 

  • McClain MA, Culbertson CT, Jacobson SC, Allbritton NL, Sims CE, Ramsey JM (2003) Microfluidic devices for the high-throughput chemical analysis of cells. Anal Chem 75:5646–5655. doi:10.1021/ac0346510

    Article  Google Scholar 

  • Metz S, Truntmann C, Bertsch A, Renaud P (2004) Polyimide microfluidic devices with integrated nanoporous filtration areas manufactured by micromachining and ion track technology. J Micromech Microeng 14:324–331. doi:10.1088/0960-1317/14/3/002

    Article  Google Scholar 

  • Pamme N, Manz A (2004) On-chip free-flow magnetophoresis: continuous flow separation of magnetic particles and agglomerates. Anal Chem 76:7250–7256. doi:10.1021/ac049183o

    Article  Google Scholar 

  • Petersson F, Nilsson A, Holm C, Jönsson H, Laurell T (2005) Continuous separation of lipid particles from erythrocytes by means of laminar flow and acoustic standing wave forces. Lab Chip 5:20–22. doi:10.1039/b405748c

    Article  Google Scholar 

  • Reddy V, Zhan JD (2005) Interfacial stabilization of organic–aqueous two-phase microflows for a miniaturized DNA extraction module. J Colloid Interface Sci 286:158–165. doi:10.1016/j.jcis.2004.12.052

    Article  Google Scholar 

  • Schilling EA, Kamholz AE, Yager P (2002) Cell lysis and protein extraction in a microfluidic device with detection by a fluorogenic enzyme assay. Anal Chem 74:1798–1804. doi:10.1021/ac015640e

    Article  Google Scholar 

  • Sethu P, Sin A, Toner M (2006) Microfluidic diffusive filter for apheresis (leukapheresis). Lab Chip 6:83–89. doi:10.1039/b512049g

    Article  Google Scholar 

  • Tai CH, Hsiung SK, Chen CY, Tsai ML, Lee GB (2007) Automatic microfluidic platform for cell separation and nucleus collection. Biomed Microdevices 9:533–543. doi:10.1007/s10544-007-9061-7

    Article  Google Scholar 

  • Taylor MT, Belgrader P, Furman BJ, Pourahmadi F, Kovacs GTA, Northrup MA (2001) Lysing bacterial spores by sonication through a flexible interface in a microfluidic system. Anal Chem 73:492–496. doi:10.1021/ac000779v

    Article  Google Scholar 

  • Tian H, Hühmer AFR, Landers JP (2000) Evaluation of silica resins for direct and efficient extraction of DNA from complex biological matrices in a miniaturized format. Anal Biochem 283:175–191. doi:10.1006/abio.2000.4577

    Article  Google Scholar 

  • Tokeshi M, Minagawa T, Kitamori T (2000) Integration of a microextraction system on a glass chip: ion-pair solvent extraction of Fe(II) with 4,7-diphenyl-1,10-phenanthrolinedisulfonic acid and tri-n-octylmethylammonium chloride. Anal Chem 72:1711. doi:10.1021/ac991147f

    Article  Google Scholar 

  • Verpoorte E (2003) Chip vision––optics for microchips. Lab Chip 3:42N–52N. doi:10.1039/b307927a

    Article  Google Scholar 

  • Voldman J, Gray ML, Toner M, Schmidt MA (2002) A microfabrication-based dynamic array cytometer. Anal Chem 74:3984–3990. doi:10.1021/ac0256235

    Article  Google Scholar 

  • Wang MM, Tu E, Raymond DE, Yang JM, Zhang H, Hagen N, Dees B, Mercer EM, Forster AH, Kariv I, Marchand PJ, Butler WF (2005) Microfluidic sorting of mammalian cells by optical force switching. Nat Biotechnol 23:83–87. doi:10.1038/nbt1050

    Article  Google Scholar 

  • Waters LC, Jacobson SC, Kroutchinina N, Khandurina J, Foote RS, Ramsey JM (1998) Microchip device for cell lysis, multiplex PCR amplification, and electrophoretic sizing. Anal Chem 70:158–162. doi:10.1021/ac970642d

    Article  Google Scholar 

  • Wen J, Guillo C, Ferrance JP, Landers JP (2007) Microfluidic chip-based protein capture from human whole blood using octadecyl (C18) silica beads for nucleic acid analysis from large volume samples. J Chromatogr A 1171:29–36. doi:10.1016/j.chroma.2007.09.057

    Article  Google Scholar 

  • Wilding P, Kricka LJ, Cheng J, Hvichia G, Shoffner MA, Fortina P (1998) Integrated cell isolation and polymerase chain reaction analysis using silicon microfilter chambers. Anal Biochem 257:95–100. doi:10.1006/abio.1997.2530

    Article  Google Scholar 

  • Wolfe KA, Breadmore MC, Ferrance JP, Power ME, Conroy JF, Norris PM, Landers JP (2002) Toward a microchip-based solid-phase extraction method for isolation of nucleic acids. Electrophoresis 23:727–733. doi:10.1002/1522–2683(200203)23:5<727::AID-ELPS727>3.0.CO;2-O

    Google Scholar 

  • Wolff A, Perch-Nielsen IR, Larsen UD, Friis P, Goranovic G, Poulsen CR, Kutter JP, Telleman P (2003) Integrating advanced functionality in a microfabricated high-throughput fluorescent-activated cell sorter. Lab Chip 3:22–27. doi:10.1039/b209333b

    Article  Google Scholar 

  • Yang X, Yang JM, Tai YC, Ho CM (1999) Micromachined membrane particle filters. Sens. Actuator A 73:184–191. doi:10.1016/S0924-4247(98)00269-6

    Article  Google Scholar 

  • Yu C, Davey MH, Svec F, Frechet JM (2001) Monolithic porous polymer for on-chip solid-phase extraction and preconcentration prepared by photoinitiated in situ polymerization within a microfluidic device. Anal Chem 73:5088–5096. doi:10.1021/ac0106288

    Article  Google Scholar 

Download references

Acknowledgements

The authors greatly acknowledge the financial support from the National Science Foundation of China under Grant number 60701019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xing Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, X., Cui, DF. Microfluidic devices for sample pretreatment and applications. Microsyst Technol 15, 667–676 (2009). https://doi.org/10.1007/s00542-009-0783-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-009-0783-8

Keywords

Navigation