Skip to main content

Advertisement

Log in

Pink1 attenuates propofol-induced apoptosis and oxidative stress in developing neurons

  • Original Article
  • Published:
Journal of Anesthesia Aims and scope Submit manuscript

Abstract

Background

The underlying mechanisms of propofol-induced neurotoxicity in developing neurons are still not completely understood. We examined the role of PTEN-induced kinase 1 (Pink1), an antioxidant protein, in propofol-induced apoptosis in developing neurons.

Materials and methods

Primary hippocampal neurons isolated from neonatal Sprague–Dawley rats were exposed to propofol 20 μM for 2, 4, 6 and 12 h. Subsequently, neurons underwent overexpression and knockdown of Pink1, followed by propofol exposure (20 μM, 6 h). Neuron apoptosis was detected by terminal transferase deoxyuridine triphosphate-biotin nick-end labeling (TUNEL). Reactive oxygen species (ROS) production in neurons was detected by using a 2,7-dichlorodihydro-fluorescein diacetate probe and target protein or mRNA levels were analyzed by Western blotting or real-time polymerase chain reaction.

Results

Propofol treatment time-dependently increased the number of TUNEL-positive neurons and the expression levels of cleaved caspase-3 and B-cell lymphoma 2 (BcL-2) associated X protein, but decreased expression levels of BcL-2. Furthermore, propofol treatment time-dependently reduced the expression levels of Pink1 mRNA and protein. ROS production and the markers of oxidative stress, 2,4-dinitrophenol and 4-hydroxynonenal, were increased by propofol treatment. However, these propofol-induced changes were significantly restored by Pink1 overexpression.

Conclusions

Pink1 plays an important role in neuronal apoptosis induced by propofol. Our results may provide some new insights in propofol-induced neurotoxicity in developing neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bosnjak ZJ, Logan S, Liu Y, Bai X. Recent insights into molecular mechanisms of propofol-induced developmental neurotoxicity: implications for the protective strategies. Anesth Analg. 2016;123:1286–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bai X, Yan Y, Canfield S, Muravyeva MY, Kikuchi C, Zaja I, Corbett JA, Bosnjak ZJ. Ketamine enhances human neural stem cell proliferation and induces neuronal apoptosis via reactive oxygen species-mediated mitochondrial pathway. Anesth Analg. 2013;116:869–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Han XD, Li M, Zhang XG, Xue ZG, Cang J. Single sevoflurane exposure increases methyl-CpG island binding protein 2 phosphorylation in the hippocampus of developing mice. Mol Med Rep. 2015;11:226–30.

    Article  CAS  PubMed  Google Scholar 

  4. Wei H. The role of calcium dysregulation in anesthetic-mediated neurotoxicity. Anesth Analg. 2011;113:972–4.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Cui Y, Ling-Shan G, Yi L, Xing-Qi W, Xue-Mei Z, Xiao-Xing Y. Repeated administration of propofol upregulated the expression of c-Fos and cleaved-caspase-3 proteins in the developing mouse brain. Indian J Pharmacol. 2011;43:648–51.

    PubMed  PubMed Central  Google Scholar 

  6. Unoki M, Nakamura Y. Growth-suppressive effects of BPOZ and EGR2, two genes involved in the PTEN signaling pathway. Oncogene. 2001;20:4457–65.

    Article  CAS  PubMed  Google Scholar 

  7. Exner N, Treske B, Paquet D, Holmstrom K, Schiesling C, Gispert S, Carballo-Carbajal I, Berg D, Hoepken HH, Gasser T, Kruger R, Winklhofer KF, Vogel F, Reichert AS, Auburger G, Kahle PJ, Schmid B, Haass C. Loss-of-function of human PINK1 results in mitochondrial pathology and can be rescued by parkin. J Neurosci. 2007;27:12413–8.

    Article  CAS  PubMed  Google Scholar 

  8. Jendrach M, Gispert S, Ricciardi F, Klinkenberg M, Schemm R, Auburger G. The mitochondrial kinase PINK1, stress response and Parkinson’s disease. J Bioenerg Biomembr. 2009;41:481–6.

    Article  CAS  PubMed  Google Scholar 

  9. McLelland GL, Soubannier V, Chen CX, McBride HM, Fon EA. Parkin and PINK1 function in a vesicular trafficking pathway regulating mitochondrial quality control. EMBO J. 2014;33:282–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Pilsl A, Winklhofer KF. Parkin, PINK1 and mitochondrial integrity: emerging concepts of mitochondrial dysfunction in Parkinson’s disease. Acta Neuropathol. 2012;123:173–88.

    Article  CAS  PubMed  Google Scholar 

  11. Li L, Hu GK. Pink1 protects cortical neurons from thapsigargin-induced oxidative stress and neuronal apoptosis. Biosci Rep. 2015;35:e00174.

    PubMed  PubMed Central  Google Scholar 

  12. Zhang Y, Dong Y, Wu X, Lu Y, Xu Z, Knapp A, Yue Y, Xu T, Xie Z. The mitochondrial pathway of anesthetic isoflurane-induced apoptosis. J Biol Chem. 2010;285:4025–37.

    Article  CAS  PubMed  Google Scholar 

  13. Wang C, Zhang X, Liu F, Paule MG, Slikker W Jr. Anesthetic-induced oxidative stress and potential protection. Sci World J. 2010;10:1473–82.

    Article  CAS  Google Scholar 

  14. Arena G, Gelmetti V, Torosantucci L, Vignone D, Lamorte G, De Rosa P, Cilia E, Jonas EA, Valente EM. PINK1 protects against cell death induced by mitochondrial depolarization, by phosphorylating Bcl-xL and impairing its pro-apoptotic cleavage. Cell Death Differ. 2013;20:920–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Twaroski DM, Yan Y, Zaja I, Clark E, Bosnjak ZJ, Bai X. Altered mitochondrial dynamics contributes to propofol-induced cell death in human stem cell-derived neurons. Anesthesiology. 2015;123:1067–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lau CF, Ho YS, Hung CH, Wuwongse S, Poon CH, Chiu K, Yang X, Chu LW, Chang RC. Protective effects of testosterone on presynaptic terminals against oligomeric beta-amyloid peptide in primary culture of hippocampal neurons. Biomed Res Int. 2014;2014:103906.

    PubMed  PubMed Central  Google Scholar 

  17. Kang BR, Kim H, Nam SH, Yun EY, Kim SR, Ahn MY, Chang JS, Hwang JS. CopA3 peptide from Copris tripartitus induces apoptosis in human leukemia cells via a caspase-independent pathway. BMB Rep. 2012;45:85–90.

    Article  PubMed  Google Scholar 

  18. Wang H, Joseph JA. Quantifying cellular oxidative stress by dichlorofluorescein assay using microplate reader. Free Radic Biol Med. 1999;27:612–6.

    Article  CAS  PubMed  Google Scholar 

  19. Jevtovic-Todorovic V, Hartman RE, Izumi Y, Benshoff ND, Dikranian K, Zorumski CF, Olney JW, Wozniak DF. Early exposure to common anesthetic agents causes widespread neurodegeneration in the developing rat brain and persistent learning deficits. J Neurosci. 2003;23:876–82.

    CAS  PubMed  Google Scholar 

  20. Viviand X, Berdugo L, De La Noe CA, Lando A, Martin C. Target concentration of propofol required to insert the laryngeal mask airway in children. Paediatr Anaesth. 2003;13:217–22.

    Article  CAS  PubMed  Google Scholar 

  21. Varveris DA, Morton NS. Target controlled infusion of propofol for induction and maintenance of anaesthesia using the paedfusor: an open pilot study. Paediatr Anaesth. 2002;12:589–93.

    Article  PubMed  Google Scholar 

  22. Hume-Smith HV, Sanatani S, Lim J, Chau A, Whyte SD. The effect of propofol concentration on dispersion of myocardial repolarization in children. Anesth Analg. 2008;107:806–10.

    Article  CAS  PubMed  Google Scholar 

  23. Xiong M, Li J, Alhashem HM, Tilak V, Patel A, Pisklakov S, Siegel A, Ye JH, Bekker A. Propofol exposure in pregnant rats induces neurotoxicity and persistent learning deficit in the offspring. Brain Sci. 2014;4:356–75.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Creeley C, Dikranian K, Dissen G, Martin L, Olney J, Brambrink A. Propofol-induced apoptosis of neurones and oligodendrocytes in fetal and neonatal rhesus macaque brain. Br J Anaesth. 2013;110(Suppl 1):i29–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Pearn ML, Hu Y, Niesman IR, Patel HH, Drummond JC, Roth DM, Akassoglou K, Patel PM, Head BP. Propofol neurotoxicity is mediated by p75 neurotrophin receptor activation. Anesthesiology. 2012;116:352–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ola MS, Nawaz M, Ahsan H. Role of Bcl-2 family proteins and caspases in the regulation of apoptosis. Mol Cell Biochem. 2011;351:41–58.

    Article  CAS  PubMed  Google Scholar 

  27. Dubinina EE, Dadali VA. Role of 4-hydroxy-trans-2-nonenal in cell functions. Biochemistry (Mosc). 2010;75:1069–87.

    Article  CAS  Google Scholar 

  28. Dagda RK, Pien I, Wang R, Zhu J, Wang KZ, Callio J, Banerjee TD, Dagda RY, Chu CT. Beyond the mitochondrion: cytosolic PINK1 remodels dendrites through protein kinase A. J Neurochem. 2014;128:864–77.

    Article  CAS  PubMed  Google Scholar 

  29. Morais VA, Verstreken P, Roethig A, Smet J, Snellinx A, Vanbrabant M, Haddad D, Frezza C, Mandemakers W, Vogt-Weisenhorn D, Van Coster R, Wurst W, Scorrano L, De Strooper B. Parkinson’s disease mutations in PINK1 result in decreased Complex I activity and deficient synaptic function. EMBO Mol Med. 2009;1:99–111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Rojas-Charry L, Cookson MR, Nino A, Arboleda H, Arboleda G. Downregulation of Pink1 influences mitochondrial fusion-fission machinery and sensitizes to neurotoxins in dopaminergic cells. Neurotoxicology. 2014;44:140–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Qi Z, Yang W, Liu Y, Cui T, Gao H, Duan C, Lu L, Zhao C, Zhao H, Yang H. Loss of PINK1 function decreases PP2A activity and promotes autophagy in dopaminergic cells and a murine model. Neurochem Int. 2011;59:572–81.

    Article  CAS  PubMed  Google Scholar 

  32. Stiles BL. PI-3-K and AKT: onto the mitochondria. Adv Drug Deliv Rev. 2009;61:1276–82.

    Article  CAS  PubMed  Google Scholar 

  33. Timmons S, Coakley MF, Moloney AM, O’Neill C. Akt signal transduction dysfunction in Parkinson’s disease. Neurosci Lett. 2009;467:30–5.

    Article  CAS  PubMed  Google Scholar 

  34. Sanchez-Mora RM, Arboleda H, Arboleda G. PINK1 overexpression protects against C2-ceramide-induced CAD cell death through the PI3K/AKT pathway. J Mol Neurosci. 2012;47:582–94.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Cang.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Funding

This work was supported by the Natural Science Foundation of China (Grant no. 81400930).

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, C., Du, F., Cang, J. et al. Pink1 attenuates propofol-induced apoptosis and oxidative stress in developing neurons. J Anesth 32, 62–69 (2018). https://doi.org/10.1007/s00540-017-2431-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00540-017-2431-2

Keywords

Navigation