Skip to main content

Advertisement

Log in

N-Acetylglucosaminyltransferase V exacerbates murine colitis with macrophage dysfunction and enhances colitic tumorigenesis

  • Original Article—Alimentary Tract
  • Published:
Journal of Gastroenterology Aims and scope Submit manuscript

An Editorial to this article was published on 24 December 2015

Abstract

Background

Oligosaccharide structures and their alterations have important roles in modulating intestinal inflammation. N-Acetylglucosaminyltransferase V (GnT-V) is involved in the biosynthesis of N-acetylglucosamine (GlcNAc) by β1,6-branching on N-glycans and is induced in various pathologic processes, such as inflammation and regeneration. GnT-V alters host immune responses by inhibiting the functions of CD4+ T cells and macrophages. The present study aimed to clarify the role of GnT-V in intestinal inflammation using GnT-V transgenic mice.

Methods

Colitis severity was compared between GnT-V transgenic mice and wild-type mice. β1,6-GlcNAc levels were investigated by phytohemagglutinin-L4 lectin blotting and flow cytometry. We investigated phagocytosis of macrophages by measuring the number of peritoneal-macrophage-ingested fluorescent latex beads by flow cytometry. Cytokine production in the culture supernatant of mononuclear cells from the spleen, mesenteric lymph nodes, and bone-marrow-derived macrophages was determined by enzyme-linked immunosorbent assay. Clodronate liposomes were intravenously injected to deplete macrophages in vivo. Chronic-colitis-associated tumorigenesis was assessed after 9 months of repeated administration of dextran sodium sulfate (DSS).

Results

DSS-induced colitis and colitis induced by trinitrobenzene sulfonic acid were markedly exacerbated in GnT-V transgenic mice compared with wild-type mice. Production of interleukin-10 and phagocytosis of macrophages were significantly impaired in GnT-V transgenic mice compared with wild-type mice. Clodronate liposome treatment to deplete macrophages blocked the exacerbation of DSS-induced colitis and impairment of interleukin-10 production in GnT-V transgenic mice. Chronic-colitis-associated tumorigenesis was significantly increased in GnT-V transgenic mice.

Conclusions

Overexpression of GnT-V exacerbated murine experimental colitis by inducing macrophage dysfunction, thereby enhancing colorectal tumorigenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

BMDM:

Bone-marrow–derived macrophage

CLP:

Cecal ligation and puncture

DSS:

Dextran sodium sulfate

EmGFP:

Emerald green fluorescent protein

GAPDH:

Glyceraldehyde 3-phosphate dehydrogenase

GFP:

Green fluorescent protein

β1,6-GlcNAc:

β1,6-N-Acetylglucosamine

GnT-III:

N-Acetylglucosaminyltransferase III

GnT-V:

N-Acetylglucosaminyltransferase V

IBD:

Inflammatory bowel disease

IL:

Interleukin

LPS:

Lipopolysaccharides

PBS:

Phosphate-buffered saline

PHA-L4 :

Phytohemagglutinin-L4

TNBS:

2,4,6-Trinitrobenzenesulfonic acid

TLR4:

Toll-like receptor 4

References

  1. Hart GW, Copeland RJ. Glycomics hits the big time. Cell. 2010;143:672–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Keusch J, Lydyard PM, Delves PJ. The effect on IgG glycosylation of altering β1,4-galactosyltransferase-1 activity in B cells. Glycobiology. 1998;8:1215–20.

    Article  CAS  PubMed  Google Scholar 

  3. Zhao Y, Sato Y, Isaji T, et al. Branched N-glycans regulate the biological functions of integrins and cadherins. FEBS J. 2008;275:1939–48.

    Article  CAS  PubMed  Google Scholar 

  4. Taniguchi N, Miyoshi E, Ko JH, et al. Implication of N-acetylglucosaminyltransferases III and V in cancer: gene regulation and signaling mechanism. Biochim Biophys Acta. 1999;1455:287–300.

    Article  CAS  PubMed  Google Scholar 

  5. Taniguchi N, Ihara S, Saito T, et al. Implication of GnT-V in cancer metastasis: a glycomic approach for identification of a target protein and its unique function as an angiogenic cofactor. Glycoconj J. 2001;18:859–65.

    Article  CAS  PubMed  Google Scholar 

  6. Granovsky M, Fata J, Pawling J, et al. Suppression of tumor growth and metastasis in Mgat5-deficient mice. Nat Med. 2000;6:306–12.

    Article  CAS  PubMed  Google Scholar 

  7. Li D, Li Y, Wu X, et al. Knockdown of Mgat5 inhibits breast cancer cell growth with activation of CD4+ T cells and macrophages. J Immunol. 2008;180:3158–65.

    Article  CAS  PubMed  Google Scholar 

  8. Miyoshi E, Nishikawa A, Ihara Y, et al. N-Acetylglucosaminyltransferase III and V messenger RNA levels in LEC rats during hepatocarcinogenesis. Cancer Res. 1993;53:3899–902.

    CAS  PubMed  Google Scholar 

  9. Miyoshi E, Ihara Y, Nishikawa A, et al. Gene expression of N-acetylglucosaminyltransferases III and V: a possible implication for liver regeneration. Hepatology. 1995;22:1847–55.

    CAS  PubMed  Google Scholar 

  10. Kimura A, Terao M, Kato A, et al. Upregulation of N-acetylglucosaminyltransferase-V by heparin-binding EGF-like growth factor induces keratinocyte proliferation and epidermal hyperplasia. Exp Dermatol. 2012;21:515–9.

    Article  CAS  PubMed  Google Scholar 

  11. Terao M, Ishikawa A, Nakahara S, et al. Enhanced epithelial-mesenchymal transition-like phenotype in N-acetylglucosaminyltransferase V transgenic mouse skin promotes wound healing. J Biol Chem. 2011;286:28303–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Leone V, Chang EB, Devkota S. Diet, microbes, and host genetics: the perfect storm in inflammatory bowel diseases. J Gastroenterol. 2013;48:315–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Itzkowitz SH, Yio X. Inflammation and cancer IV. Colorectal cancer in inflammatory bowel disease: the role of inflammation. Am J Physiol Gastrointest Liver Physiol. 2004;287:G7–17.

    Article  CAS  PubMed  Google Scholar 

  14. Shinzaki S, Iijima H, Nakagawa T, et al. IgG oligosaccharide alterations are a novel diagnostic marker for disease activity and the clinical course of inflammatory bowel disease. Am J Gastroenterol. 2008;103:1173–81.

    Article  PubMed  Google Scholar 

  15. Shinzaki S, Iijima H, Fujii H, et al. Altered oligosaccharide structures reduce colitis induction in mice defective in β-1,4-galactosyltransferase. Gastroenterology. 2012;142:1172–82.

    Article  CAS  PubMed  Google Scholar 

  16. Theodoratou E, Campbell H, Ventham NT, et al. The role of glycosylation in IBD. Nat Rev Gastroenterol Hepatol. 2014;11:588–600.

    CAS  PubMed  Google Scholar 

  17. Iijima H, Neurath MF, Nagaishi T, et al. Specific regulation of T helper cell 1-mediated murine colitis by CEACAM1. J Exp Med. 2004;199:471–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Dohi T, Ejima C, Kato R, et al. Therapeutic potential of follistatin for colonic inflammation in mice. Gastroenterology. 2005;128:411–23.

    Article  CAS  PubMed  Google Scholar 

  19. Long E, Huynh HT, Zhao X. Involvement of insulin-like growth factor-1 and its binding proteins in proliferation and differentiation of murine bone marrow-derived macrophage precursors. Endocrine. 1998;9:185–92.

    Article  CAS  PubMed  Google Scholar 

  20. Aicher WK, Fujihashi K, Yamamoto M, et al. Effects of the lpr/lpr mutation on T and B cell populations in the lamina propria of the small intestine, a mucosal effector site. Int Immunol. 1992;4:959–68.

    Article  CAS  PubMed  Google Scholar 

  21. Fink MP, Heard SO. Laboratory models of sepsis and septic shock. J Surg Res. 1990;49:186–96.

    Article  CAS  PubMed  Google Scholar 

  22. Weisser SB, Brugger HK, Voglmaier NS, et al. SHIP-deficient, alternatively activated macrophages protect mice during DSS-induced colitis. J Leukoc Biol. 2011;90:483–92.

    Article  CAS  PubMed  Google Scholar 

  23. Dieleman LA, Ridwan BU, Tennyson GS, et al. Dextran sulfate sodium-induced colitis occurs in severe combined immunodeficient mice. Gastroenterology. 1994;107:1643–52.

    CAS  PubMed  Google Scholar 

  24. Wirtz S, Neufert C, Weigmann B, et al. Chemically induced mouse models of intestinal inflammation. Nat Protoc. 2007;2:541–6.

    Article  CAS  PubMed  Google Scholar 

  25. Inoue T, Murano M, Abe Y, et al. Therapeutic effect of nimesulide on colorectal carcinogenesis in experimental murine ulcerative colitis. J Gastroenterol Hepatol. 2007;22:1474–81.

    Article  CAS  PubMed  Google Scholar 

  26. Kuhn R, Lohler J, Rennick D, et al. Interleukin-10-deficient mice develop chronic enterocolitis. Cell. 1993;75:263–74.

    Article  CAS  PubMed  Google Scholar 

  27. Gordon S. Alternative activation of macrophages. Nat Rev Immunol. 2003;3:23–35.

    Article  CAS  PubMed  Google Scholar 

  28. Edwards JP, Zhang X, Frauwirth KA, et al. Biochemical and functional characterization of three activated macrophage populations. J Leukoc Biol. 2006;80:1298–307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Boonstra A, Rajsbaum R, Holman M, et al. Macrophages and myeloid dendritic cells, but not plasmacytoid dendritic cells, produce IL-10 in response to MyD88- and TRIF-dependent TLR signals, and TLR-independent signals. J Immunol. 2006;177:7551–8.

    Article  CAS  PubMed  Google Scholar 

  30. Murai M, Turovskaya O, Kim G, et al. Interleukin 10 acts on regulatory T cells to maintain expression of the transcription factor Foxp3 and suppressive function in mice with colitis. Nat Immunol. 2009;10:1178–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lacy-Hulbert A, Smith AM, Tissire H, et al. Ulcerative colitis and autoimmunity induced by loss of myeloid alphav integrins. Proc Natl Acad Sci U S A. 2007;104:15823–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chung EY, Liu J, Homma Y, et al. Interleukin-10 expression in macrophages during phagocytosis of apoptotic cells is mediated by homeodomain proteins Pbx1 and Prep-1. Immunity. 2007;27:952–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kamada N, Hisamatsu T, Okamoto S, et al. Abnormally differentiated subsets of intestinal macrophage play a key role in Th1-dominant chronic colitis through excess production of IL-12 and IL-23 in response to bacteria. J Immunol. 2005;175:6900–8.

    Article  CAS  PubMed  Google Scholar 

  34. Beutler B, Rietschel ET. Innate immune sensing and its roots: the story of endotoxin. Nat Rev Immunol. 2003;3:169–76.

    Article  CAS  PubMed  Google Scholar 

  35. Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell. 2006;124:783–801.

    Article  CAS  PubMed  Google Scholar 

  36. Rakoff-Nahoum S, Paglino J, Eslami-Varzaneh F, et al. Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. Cell. 2004;118:229–41.

    Article  CAS  PubMed  Google Scholar 

  37. Poltorak A, He X, Smirnova I, et al. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science. 1998;282:2085–8.

    Article  CAS  PubMed  Google Scholar 

  38. Yang H, Hreggvidsdottir HS, Palmblad K, et al. A critical cysteine is required for HMGB1 binding to Toll-like receptor 4 and activation of macrophage cytokine release. Proc Natl Acad Sci U S A. 2010;107:11942–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Means TK. Fungal pathogen recognition by scavenger receptors in nematodes and mammals. Virulence. 2010;1:37–41.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Nishitani C, Takahashi M, Mitsuzawa H, et al. Mutational analysis of Cys88 of Toll-like receptor 4 highlights the critical role of MD-2 in cell surface receptor expression. Int Immunol. 2009;21:925–34.

    Article  CAS  PubMed  Google Scholar 

  41. Fiala M, Liu PT, Espinosa-Jeffrey A, et al. Innate immunity and transcription of MGAT-III and Toll-like receptors in Alzheimer’s disease patients are improved by bisdemethoxycurcumin. Proc Natl Acad Sci U S A. 2007;104:12849–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank M. Terao from the Department of Dermatology, Osaka University Graduate School of Medicine, for great support and mentorship in the performance of this research. This work was supported by a Grant-in-Aid for Scientific Research (A), No. 21249038, and a Grant-in-Aid for Young Scientists (B), No. 22790643, from the Japan Society for the Promotion of Science, a grant from the Global COE program of Osaka University funded by the Ministry of Education, Culture, Sports, Science, and Technology of Japan, and a Grant-in-Aid from the Smoking Research Foundation.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eiji Miyoshi.

Additional information

S. Shinzaki and M. Ishii contributed equally to the manuscript.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shinzaki, S., Ishii, M., Fujii, H. et al. N-Acetylglucosaminyltransferase V exacerbates murine colitis with macrophage dysfunction and enhances colitic tumorigenesis. J Gastroenterol 51, 357–369 (2016). https://doi.org/10.1007/s00535-015-1119-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00535-015-1119-3

Keywords

Navigation