Skip to main content

Advertisement

Log in

The Cenerian orogeny (early Paleozoic) from the perspective of the Alpine region

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

An Erratum to this article was published on 02 June 2017

Abstract

In the Alps, relicts of pre-Variscan basement are composed of metagreywackes and metapelites (partly migmatic) with intercalated amphibolites and sheets of Cambro–Ordovician peraluminous metagranitoids. Such gneiss terranes are the result of an orogenic type, which was globally widespread in early Paleozoic times. It caused the formation of several 100 km wide cratonized subduction–accretion complexes (SACs) hosting peraluminous arcs at the periphery of Gondwana. “Cenerian orogeny” is a newly suggested term for these early Paleozoic events, which culminate in the Ordovician. The justification for a separate name is given by three characteristics, which are significantly different compared to the Cadomian, Caledonian and Variscan orogenies: the age, the paleogeographic position and the tectonic setting. Other parts of the southern and central European crust might also have been generated by the cratonization of peri-Gondwanan SACs during the Cenerian orogeny.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ballèvre M, Fourcade S, Capdevila R, Peucat J-J, Cocherie A, Fanning CM (2012) Geochronology and geochemistry of Ordovician felsic volcanism in the Southern Armorican Massif (Variscan belt, France): Implications for the breakup of Gondwana. Gondwana Res 21:1019–1036

    Article  Google Scholar 

  • Barker F, Farmer GL, Ayuso RA, Plafker G, Lull JS (1992) The 50 Ma granodiorite of the Eastern Gulf of Alaska: melting in an accretionary prism in the forearc. J Geophys Res 97(B5):6757–6778

    Article  Google Scholar 

  • Boriani A, Origoni Giobbi E, Del Moro A (1983) Composition, level of intrusion and age of the ‘Serie dei Laghi’ orthogneisses (Northern Italy—Ticino, Switzerland). Rend Soc It Min Petr 38 (1):191–205

    Google Scholar 

  • Boriani A, Origoni Giobbi E, Borghi A, Caironi V (1990) The evolution of the “Serie dei Laghi” (Strona-Ceneri and Scisti dei Laghi): the upper component of the Ivrea-Verbano crustal section; Southern Alps, North Italy and Ticino, Switzerland. Tectonophysics 182:103–118

    Article  Google Scholar 

  • Boriani A, Giobbi Origoni E, Pinarelli L (1995) Paleozoic evolution of southern Alpine crust (northern Italy) as indicated by contrasting granitoid suites. Lithos 35:47–63

    Article  Google Scholar 

  • Cawood PA, Kröner A, Collins WJ, Kusky TM, Mooney WD, Windley BF (2009) Accretionary orogens through Earth history. Geological Society, 318. Special Publications, London, pp 1–36

    Google Scholar 

  • Chappell BW, White AJR (2001) Two contrasting granite types: 25 years later. Aust J Earth Sci 48:489–499

    Article  Google Scholar 

  • Clift P, Vannucchi P (2004) Controls on tectonic accretion versus erosion in subduction zones: implications for the origin and recycling of the continental crust. Rev Geophys 42:1–31

    Article  Google Scholar 

  • Cocks LRM, Torsvik TH (2006) European geography in a global context from the Vendian to the end of the Palaeozoic. From: Gee DG, Stephenson RA (eds) European Lithosphere Dynamics. Geological Society, London, Memoirs 32:83–95

  • Cocks LRM, Torsvik TH (2011) The Palaeozoic geography of Laurentia and western Laurussia: a stable craton with mobile margins. Earth-Sci Rev 106:1–51

    Article  Google Scholar 

  • Crook KAW (1980) Fore-arc evolution and continental growth: a general model. J Struct Geol 2(3):289–303

    Article  Google Scholar 

  • D’Lemos RS, Brown M, Strachan RA (1992) Granite magma generation, ascent and emplacement within a transpressive orogen. J Geol Soc Lond 149:487–490

    Article  Google Scholar 

  • Díaz-Alvarado J, Fernández C, Chichorro M, Castro A, Pereira MF (2016) Tracing the Cambro-Ordovician ferrosilicic to calc-alkaline magmatic association in Iberia by in situ U–Pb SHRIMP zircon geochronology (Gredos massif, Spanish Central System batholith). Tectonophysics 681:95–110

    Article  Google Scholar 

  • Díez Montes AD, Martínez Catalán JR, Bellido Mulas F (2010) Role of the Ollo de Sapo massive felsic volcanism of NW Iberia in the Early Ordovician dynamics of northern Gondwana. Gondwana Res 17:363–376

    Article  Google Scholar 

  • Feijth J (2002) Palaeozoic and Mesozoic tectono-metamorphic development and geochronology of the Orobic chain (Southern Alps, Lombardy, Italy). Diploma thesis, Technical University of Berlin

  • Foden J, Elburg MA, Dougherty-Page J, Burtt A (2006) The timing and duration of the Delamerian orogeny: Correlation with the Ross orogen and implications for Gondwana assembly. J Geol 114:189–210

    Article  Google Scholar 

  • Foster DA, Goscombe BD (2013) Continental growth and recycling in convergent orogens with large turbidite fans on oceanic crust. Geosciences 3:354–388

    Article  Google Scholar 

  • Franz L, Romer RL (2007) Caledonian high-pressure metamorphism in the Strona-Ceneri Zone (Southern Alps of southern Switzerland and northern Italy). Swiss J Geosci 100(3):457–467

    Article  Google Scholar 

  • Frisch W, Meschede M (2011) Plattentektonik: Kontinentverschiebung und Gebirgsbildung. Primus Verlag, 4. Auflage

  • Giobbi Mancini E, Boriani A, Villa IM (2003) Pre-Alpine ophiolites in the basement of Southern Alps: the presence of a bimodal association (LAG-Leptyno-Amphibolitic group) in the Serie dei Laghi (N-Italy, Ticino-CH). Rend Fis Acc Lincei 14(s 9): 79–99

    Google Scholar 

  • Handy MR, Franz L, Heller F, Janott B, Zurbriggen R (1999) Multistage accretion and exhumation of the continental crust (Ivrea crustal section, Italy and Switzerland). Tectonophysics 18:1154–1177

    Google Scholar 

  • Harris NBW, Pearce JA, Tindle AG (1986) Geochemical characteristics of collision-zone magmatism. In: Collision Tectonics, edited by Coward MP, Ries AC, Geol. Soc. Spec. Publ. London 19:67–81

    Google Scholar 

  • Hoffman PF, Kaufman AJ, Halverson GP, Schrag DP (1998) A Neoproterozoic Snowball Earth. Science 281:1342–1346

    Article  Google Scholar 

  • Johnson SE, Vernon RH (1995) Stepping stones and pitfall in the determination of an anticlockwise P-T-t deformation path: the low-P, high-T Cooma Complex, Australia. J Metamorph Geol 13:165–183

    Article  Google Scholar 

  • Linnemann U, Gerdes A, Hofmann M, Marko L (2014) Neoproterozoic to early Cambrian crustal growth and orogenic zoning along the periphery of the West African Craton - Constraints from U-Pb zircon ages and Hf isotopes (Schwarzburg Antiform, Germany). Precambr Res 244:236–278

    Article  Google Scholar 

  • Lopez-Sanchez MA, Iriondo A, Marco A, Martinez FJ (2015) A U–Pb zircon age (479 ± 5 Ma) from the uppermost layers of the Ollo de Sapo Formation near Viveiro (NW Spain): implications for the duration of rifting-related Cambro–Ordovician volcanism in Iberia. Geol Mag 152(2):341–350

    Article  Google Scholar 

  • Magilligan FJ, Gomez B, Mertes LAK, Smith LC, Smith ND, Finnegan D, Garvin JB (2002) Geomorphic effectiveness, sandur development, and the pattern of landscape response during jökulhlaups: Skeiðarársandur, southeastern Iceland. Geomorphology 44:95–113

    Article  Google Scholar 

  • Manzotti P, Poujol M, Ballèvre M (2015) Detrital zircon geochronology in blueschist-facies meta-conglomerates from the Western Alps: implications for the late Carboniferous to early Permian palaeogeography. Int J Earth Sci (Geol Rundsch) 104:703–731

    Article  Google Scholar 

  • Manzotti P, Ballèvre M, Poujol M (2016) Detrital zircon geochronology in the Dora-Maira and Zone Houillere: a record of sediment travel paths in the Carboniferous. Terra Nova 28:279–288

    Article  Google Scholar 

  • Meert JG, Lieberman BS (2008) The Neoproterozoic assembly of Gondwana and its relationship to the Ediacaran-Cambrian radiation. Gondwana Res 14:5–21

    Article  Google Scholar 

  • Meinhold G, Arslan A, Lehnert O, Stampfli GM (2011) Global mass wasting during the Middle Ordovician: Meteoritic trigger or plate-tectonic environment? Gondwana Res 19:535–541

    Article  Google Scholar 

  • Moore JC, Diebold J, Fisher MA, Sample J, Brocher T, Talwani M, Ewing J, von Huene R, Rowe C, Stone D, Stevens C, Sawyer D (1991) EDGE deep seismic reflection transect of the eastern Aleutian arc-trench layered lower crust reveals underplating and continental growth. Geology 19:420–424

    Article  Google Scholar 

  • Pearce JA, Harris NBW, Tindle AG (1984) Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J Petrol 25:956–983

    Article  Google Scholar 

  • Pinarelli L, Boriani A (2007) Tracing metamorphism, magmatism and tectonics in the southern Alps (Italy): constraints from Rb-Sr and Pb-Pb geochronology, and isotope geochemistry. Periodico di Mineralogia 76:5–24

    Google Scholar 

  • Pinarelli L, Bergomi MA, Boriani A, Giobbi E (2008) Pre-metamorphic melt infiltration in metasediments: geochemical, isotopic (Sr, Nd, and Pb), and field evidence from Serie dei Laghi (Southern Alps, Italy). Mineral Petrol 93:213–242

    Article  Google Scholar 

  • Pouclet A, Álvaro JJ, Bardintzeff J-M, Gil Imaz A, Monceret E, Vizcaïno D (2017) Cambrian-early Ordovician volcanism across the South Armorican and Occitan domains of the Variscan Belt in France: Continental breakup and rifting of the northern Gondwana margin. Geosci Front 8(1):25–64. doi:10.1016/j.gsf.2016.03.002

    Article  Google Scholar 

  • Rino S, Kon Y, Sato W, Maruyama S, Santosh M, Zhao D (2008) The Grenvillian and Pan-African orogens: world’s largest orogenies through geologic time, and their implications on the origin of superplume. Gondwana Res 14:51–72

    Article  Google Scholar 

  • Rubio-Ordóñez A, Valverde-Vaquero P, Corretgé LG, Cuesta-Fernández A, Gallstegui G, Fernández-Gonzáles M, Gerdes A (2012) An Early Ordovician tonalitic–granodioritic belt along the Schistose-Greywacke Domain of the Central Iberian Zone (Iberian Massif, Variscan Belt). Geol Mag 1:1–13. DOI:10.1017/S0016756811001129

    Google Scholar 

  • Schaltegger U, Gebauer D (1999) Pre-Alpine geochronology of the Central, Western and Southern Alps. Schweiz Mineral Petrogr Mitt 79:79–87

    Google Scholar 

  • Scheiber T, Berndt J, Mezger K, Pfiffner OA (2014) Precambrian to Paleozoic zircon record in the Siviez-Mischabel basement (western Swiss Alps). Swiss J Geosci 107:49–64

    Article  Google Scholar 

  • Sengör AMC, Okurogullari AH (1991) The role of accretionary wedges in the growth of continents. Asiatic examples from Argand to plate tectonics. Eclogae Geol Helv 84:535–597

    Google Scholar 

  • Servais T, Harper DAT, Li J, Munnecke A, Owen AW, Sheehan PM (2009) Understanding the Great Ordovician Biodiversification Event (GOBE): Influences of paleogeography, paleoclimate, or paleoecology? GSA Today 19 no(4/5):4–10

    Article  Google Scholar 

  • Seyfert CK, Sirkin LA (1973) Earth history and plate tectonics, an introduction to historical geology. Harper & Row, New York

    Google Scholar 

  • Stern RJ, Avigad D, Miller NR, Beyth M (2006) Evidence for the Snowball Earth hypothesis in the Arabian–Nubian Shield and the East African Orogen. J Afr Earth Sci 44:1–20

    Article  Google Scholar 

  • Torsvik TH, Cocks LRM (2011) The Paleozoic paleogeography of central Gondwana. From: Van Hinsbergen DJJ, Buiter SJH, Torsvik TH, Gaina C, Webb SJ (eds) The formation and evolution of Africa: a synopsis of 3.8 Ga of earth history. Geological Society, London, Special Publications 357:137–166

  • Van Staal CR, Hatcher RD Jr (2010) Global setting of Ordovician orogenies. In: Finney SC, Berry WBN (eds) The Ordovician Earth system. Geological Society of America special paper 466:1–11

  • Villaseca C, Merino Martínez E, Orejana D, Andersenc T, Belousova E (2016) Zircon Hf signatures from granitic orthogneisses of the Spanish Central System: significance and sources of the Cambro-Ordovician magmatism in the Iberian Variscan Belt. Gondwana Res 34:60–83

    Article  Google Scholar 

  • Von Raumer JF (1998) The Paleozoic evolution in the Alps: from Gondwana to Pangea. Geol Rundsch 87:407–435

    Article  Google Scholar 

  • Von Raumer JF, Bussy F, Schaltegger U, Schulz B, Stampfli GM (2013) Pre-Mesozoic Alpine basements: their place in the European Paleozoic framework. Bull Geol Soc Am 125(1–2):89–108

    Article  Google Scholar 

  • Zurbriggen R (2015) Ordovician orogeny in the Alps: a reappraisal. Int J Earth Sci (Geol Rundsch) 104:335–350

    Article  Google Scholar 

  • Zurbriggen R, Franz L, Handy MR (1997) Pre-Variscan deformation, metamorphism and magmatism in the Strona-Ceneri Zone (southern Alps of northern Italy and southern Switzerland). Schweiz. Minerl. Petrogr. Mitt. 77:361–380

Download references

Acknowledgements

I am thankful for many valuable discussions with Ivan Mercolli, Marco Herwegh, Alfons Berger and other colleagues from the Institute of Geological Sciences of the University of Bern (Switzerland) and the participants of the VARISCAN 2015 conference held in Rennes (France).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger Zurbriggen.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s00531-017-1496-3.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zurbriggen, R. The Cenerian orogeny (early Paleozoic) from the perspective of the Alpine region. Int J Earth Sci (Geol Rundsch) 106, 517–529 (2017). https://doi.org/10.1007/s00531-016-1438-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-016-1438-5

Keywords

Navigation