Skip to main content
Log in

Petrogenesis and geodynamics of plagiogranites from Central Turkey (Ekecikdağ/Aksaray): new geochemical and isotopic data for generation in an arc basin system within the northern branch of Neotethys

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

In the Late Cretaceous, throughout the closure of the Neotethys Ocean, ophiolitic rocks from the İzmir–Ankara–Erzincan ocean branch were overthrusted the northern margin of the Tauride-Anatolide Platform. The ophiolitic rocks in the Ekecikdağ (Aksaray/Central Turkey) region typify the oceanic crust of the İzmir–Ankara–Erzincan branch of Neotethys. The gabbros in the area are cut by copious plagiogranite dykes, and both rock units are intruded by mafic dykes. The plagiogranites are leucocratic, fine- to medium-grained calc-alkaline rocks characterized mainly by plagioclase and quartz, with minor amounts of biotite, hornblende and clinopyroxene, and accessory phases of zircon, titanite, apatite and opaque minerals. They are tonalite and trondhjemite in composition with high SiO2 (69.9–75.9 wt%) and exceptionally low K2O (<0.5 wt%) contents. The plagiogranites in common with gabbros and mafic dykes show high large-ion lithophile elements/high-field strength element ratios with depletion in Nb, Ti and light rare-earth elements with respect to N-MORB. The plagiogranites together with gabbros and mafic dykes show low initial 87Sr/86Sr ratios (0.70419–0.70647), high ƐNd(T) (6.0–7.5) values with 206Pb/204Pb (18.199–18.581), 207Pb/204Pb (15.571–15.639) and 208Pb/204Pb (38.292–38.605) ratios indicating a depleted mantle source modified with a subduction component. They show similar isotopic characteristics to the other supra-subduction zone (SSZ) ophiolites in the Eastern Mediterranean to East Anatolian–Lesser Caucasus and Iran regions. It is suggested that the Ekecikdağ plagiogranite was generated in a short time interval from a depleted mantle source in a SSZ/fore-arc basin setting, and its nature was further modified by a subduction component during intra-oceanic subduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Aldiss DT (1981) Plagiogranites from the ocean crust and ophiolites. Nature 289:577–578

    Article  Google Scholar 

  • Arth JG (1979) Some trace elements in trondhjemites—their implications to magma genesis and paleotectonic setting. In: Barker F (ed) Trondhjemite, dacites and related rocks. Elsevier, New York, pp 123–132

    Chapter  Google Scholar 

  • Barbieri M, Caggianelli A, Di Florio MR, Lorenzoni S (1994) Plagiogranites and gabbroic rocks from the Mingora ophiolitic mélange, Swat Valley, NW Frontier Province, Pakistan. Miner Mag 58:553–566

    Article  Google Scholar 

  • Barker F (1979) Trondhjemite: definition, environment, and hypotheses of origin. In: Barker F (ed) Trondhjemite, dacites and related rocks. Elsevier, New York, pp 1–12

    Chapter  Google Scholar 

  • Bonev N, Stampfli G (2009) Gabbro, plagiogranites and associated dykes in the supra-subduction zone Evros Ophiolites, NE Greece. Geol Mag 146(1):72–91

    Article  Google Scholar 

  • Booij E, Bettison-Varga L, Farthing D, Staudigel H (2000) Pb-isotope systematics of a fossil hydrothermal system from the troodos ophiolite, cyprus: evidence for a polyphased alteration history. Geochim Cosmochim Acta 64:3559–3569

    Article  Google Scholar 

  • Bortolotti V, Chiari M, Göncüoglu MC, Marcucci M, Principi G, Tekin UK, Saccani E, Tassinari R (2013) Age and geochemistry of basalt-chert associations in the ophiolites of the İzmir–Ankara mélange east of Ankara, Turkey: preliminary data. Ofioliti 38(2):157–173

    Google Scholar 

  • Bozkurt E, Mittwede S (2001) Introduction to the geology of Turkey—a synthesis. Int Geol Rev 43:578–594

    Article  Google Scholar 

  • Brophy JG, Pu X (2012) Rare earth-SiO2 systematics of mid-ocean ridge plagiogranites and host gabbros from the Fournier oceanic fragment, New Brunswick, Canada: a field evaluation of some model predictions. Contrib Miner Petrol 164:191–204. doi:10.1007/s00410-012-0732-x

    Article  Google Scholar 

  • Çelik ÖF, Marzoli A, Marschik R, Chiaradia M, Neubauer F, Öz İ (2011) Early-middle Jurassic intra-oceanic subduction in the İzmir–Ankara–Erzincan Ocean, Northern Turkey. Tectonophysics 509:120–134

    Article  Google Scholar 

  • Chauvel C, Blichert-Toft J (2001) A hafnium isotope and trace element perspective on melting of the depleted mantle. Earth Planet Sci Lett 190:137–151

    Article  Google Scholar 

  • Coish RA, Hickey R, Frety FA (1983) Rare earth element geochemistry of the Betts Cove ophiolite, Newfoundland: complexities in ophiolite formation. Geochim Cosmochim Acta 46:2117–2134

    Article  Google Scholar 

  • Coleman RG, Donato MM (1979) Oceanic plagiogranite revisited. In: Barker F (ed) Trondhjemite, dacites and related rocks. Elsevier, New York, pp 149–167

    Chapter  Google Scholar 

  • Coleman RG, Peterman ZE (1975) Oceanic plagiogranite. J Geophys Res 80:1099–1108

    Article  Google Scholar 

  • Deniz K, Kadıoğlu YK (2016) Assimilation and fractional crystallization of foid-bearing alkaline rocks: Buzlukdağ intrusives, Central Anatolia, Turkey. Turk J Earth Sci 25(4):341–366

    Article  Google Scholar 

  • Dupré B, Allègre CJ (1980) Pb–Sr–Nd isotopic correlation and the chemistry of the North Atlantic mantle. Nature 286:17–22

    Article  Google Scholar 

  • Erdoğan B, Akay E, Uğur MS (1996) Geology of the Yozgat region and evolution of the collisional Çankırı Basin. Int Geol Rev 38(9):788–806

    Article  Google Scholar 

  • Fedo CM, Nesbitt HW, Young GM (1995) Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance. Geology 23:921–924

    Article  Google Scholar 

  • Floyd PA, Yalınız MK, Göncüoglu MC (1998) Geochemistry and petrogenesis of intrusive and extrusive ophiolitic plagiogranites, Central Anatolian Crystalline Complex, Turkey. Lithos 42:225–241

    Article  Google Scholar 

  • Floyd PA, Göncüoglu MC, Winchester JA, Yalınız MK (2000) Geochemical character and tectonic environment of Neotethyan ophiolitic fragments and metabasites in the Central Anatolian Crystalline Complex, Turkey. In: Bozkurt E, Winchester JA, Piper JDA (ed) Tectonics and magmatism in Turkey and the surrounding area. Geological Society of London, Special Publication, 173:183–202

  • France L, Koepke J, Ildefonse B, Cichy S, Deschamps F (2010) Hydrous partial melting in the sheeted dike complex at fast spreading ridges: experimental and natural observations. Contrib Miner Petrol 160:683–704

    Article  Google Scholar 

  • Gale A, Dalton CA, Langmuir CH, Su Y, Schilling J-G (2013) The mean composition of ocean ridge basalts. Geochem Geophys Geosyst 14(3):489–518. doi:10.1029/2012GC004334

    Article  Google Scholar 

  • Godard M, Bosch D, Einaudi F (2006) A MORB source for low-Ti magmatism in the Semail ophiolite. Chem Geol 234:58–78

    Article  Google Scholar 

  • Göncüoglu MC (2014) Comments on a single versus multi-armed Southern Neotethys in SE Turkey and Iran. IGCP589 Development of the Asian Tethyan realm: Genesis, process and outcome. Abstracts and Proceedings, 89–95

  • Göncüoglu MC, Türeli K (1993a) Petrology and geodynamic interpretation of plagiogranites from Central Anatolian Ophiolites (Aksaray-Turkey). Turk J Earth Sci 2:195–203

    Google Scholar 

  • Göncüoglu MC, Türeli TK (1993b) Petrology and geodynamic interpretation of plagiogranites from Central Anatolian ophiolites (Aksaray, Turkey). Ofioliti 18(2):187

    Google Scholar 

  • Göncüoglu MC, Toprak GMV, Kuşçu I, Erler A, Olgun E (1991) Geology of the western part of the Central Anatolian Massif: part I southern part, (Report No: 2909), Turkish Petroleum Company

  • Göncüoglu MC, Dirik K, Kozlu H (1997) Pre-Alpine and Alpine Terranes in Turkey: explanatory notes to the terrane map of Turkey. Ann Geol Pays Hell 37:515–536

    Google Scholar 

  • Göncüoglu MC, Sayıt K, Tekin UK (2010) Oceanization of the northern Neotethys: geochemical evidence from ophiolitic melange basalts within the İzmir–Ankara suture belt, NW Turkey. Lithos 116:175–187

    Article  Google Scholar 

  • Göncüoglu MC, Tekin UK, Sayıt K, Bedi Y, Uzunçimen-Keçeli S (2015) Evolution of the Neotethyan branches in the Eastern Mediterranean: petrology and ages of oceanic basalts. Igcp589 the fourth symposium of the international geosciences programme abstracts and proceedings, 17–19

  • Grimes CB, Ushikubo T, Kozdon R, Valley JW (2013) Perspectives on the origin of plagiogranites in ophiolites from oxygen isotopes in zircon. Lithos 179:48–66

    Article  Google Scholar 

  • Hamelin B, Dupré B, Allègre CJ (1984) The lead isotope systematics of ophiolite complexes. Earth Planet Sci Lett 67:351–366

    Article  Google Scholar 

  • Hamelin B, Dupré B, Brévart O, Allègre CJ (1988) Metallogenesis at paleo-spreading centers: lead isotopes in sulfides, rocks and sediments from the Troodos ophiolite (Cyprus). Chem Geol 68:229–238

    Article  Google Scholar 

  • Hässig M, Rolland Y, Sosson M, Galoyan G, Sahakyan L, Topuz G, Çelik ÖF, Avagyan A, Müller C (2013) Linking the NE Anatolian and Lesser Caucasus ophiolites: evidence for large-scale obduction of oceanic crust and implications for the formation of the Lesser Caucasus-Pontides Arc. Geodin Acta 26(3–4):311–330

    Article  Google Scholar 

  • Hatzipanagiotou K, Tsikouras B (1999) Plagiogranites in the Hellenic ophiolites. Ofioliti 24:283–292

    Google Scholar 

  • Hoernle K (1998) Geochemistry of Jurassic oceanic crust beneath Gran Canaria (Canary Islands): implications for crustal recycling and assimilation. J Petrol 39:859–880

    Article  Google Scholar 

  • Hofmann AW (2003) Sampling mantle heterogeneity trough oceanic basalts: isotopes and trace elements. In: Carlson RW, Holland HD, Turekian KK (eds) Treatise on geochemistry, vol 2., The mantle and coreElsevier, Oxford, pp 61–101

    Google Scholar 

  • Hollocher K, Robinson P, Walsh E, Roberts D (2012) Geochemistry of amphibolite-facies volcanics and gabbros of the Støren nappe in extensions West and Southwest of Trondheim, western gneiss region, Norway: a key to correlations and paleotectonic settings. Am J Sci 312:357–416. doi:10.2475/04.2012.01

    Article  Google Scholar 

  • Hughes CJ (1973) Spilites, keratophyres and the igneous spectrum. Geol Mag 109:513–527

    Article  Google Scholar 

  • İlbeyli N (1993) Petrography and petrology of the ultramafic-mafic rocks of the Felahiye (Kayseri) region: Unpubl. M.Sc. thesis, University of Ankara, Turkey (in Turkish)

  • Irvine TN, Baragar WRA (1971) A guide to the geochemical classification of the common volcanic rocks. Can J Earth Sci 8:523–548

    Article  Google Scholar 

  • Jafri SH, Charan SN, Govil PK (1995) Plagiogranite from the Andaman ophiolite belt, Bay of Bengal, India. J Geol Soc Lond 152:681–687

    Article  Google Scholar 

  • Kadıoğlu YK, Ates A, Güleç N (1998) Structural interpretation of gabbroic rocks in Ağaçören Granitoid, Central Turkey: field observations and aeromagnetic data. Geol Mag 135(02):245–254

    Article  Google Scholar 

  • Kadıoğlu YK, Dilek Y, Güleç N, Foland KA (2003) Tectonomagmatic evolution of bimodal plutons in the Central Anatolian Crystalline Complex, Turkey. J Geol 111(6):671–690

    Article  Google Scholar 

  • Kılıç AD (2009) Petrographical and geochemical properties of plagiogranites and gabbros in Guleman ophiolite. Miner Res Exp Bull 139:33–49

    Google Scholar 

  • Koçak K, Işık F, Arslan M, Zedef V (2005) Petrological and source region characteristics of ophiolitic hornblende gabbros from the Aksaray and Kayseri regions, Central Anatolian Crystalline Complex, Turkey. J Asian Earth Sci 25:883–891

    Article  Google Scholar 

  • Koçak K, Leake BE, Söğüt R (2014) Geochemical characteristics of oceanic plagiogranite and basic dikes at the sheeted dike complex of Central Anatolian Ophiolites at Bozkır (Ortakoy-Aksaray/TURKEY) Dam. Latest trends in energy, environment and development, proceedings of the 7th international conference on environmental and geological science and engineering, p. 296–299

  • Koepke J, Berndt J, Feig ST, Holtz F (2007) The formation of SiO2-rich melts within deep oceanic crust by hydrous partial melting of gabbros. Contrib Miner Petrol 153:67–84

    Article  Google Scholar 

  • Koglini N, Kostopoulos D, Reischmann T (2009) Geochemistry, petrogenesis and tectonic setting of the Samothraki mafic suite, NE Greece: trace-element, isotopic and zircon age constraints. Tectonophysics 473:53–68

    Article  Google Scholar 

  • Köksal S, Romer RL, Göncüoglu MC, Toksoy-Köksal F (2004) Timing of the transition from the post-collisional to A-type magmatism: titanite U/Pb ages from the alpine Central Anatolian Granitoids, Turkey. Int J Earth Sci 93:974–989

    Article  Google Scholar 

  • Köksal S, Göncüoglu MC, Toksoy-Köksal F (2010) Re-evaluation of the petrological features of the Ekecikdağ Plagiogranites in Central Anatolia/Turkey. Symposium of Geological Society of America, Tectonic Crossroads: evolving orogens of Eurasia-Africa-Arabia, Ankara, Turkey, Abstracts, p. 83

  • Köksal S, Möller A, Göncüoglu MC, Frei D, Gerdes A (2012) Crustal homogenization revealed by U-Pb zircon ages and Hf isotope evidence from the Late Cretaceous granitoids of the Agaçören intrusive suite (Central Anatolia/Turkey). Contrib Miner Petrol 163:725–743. doi:10.1007/s00410-011-0696-2

    Article  Google Scholar 

  • Köksal S, Toksoy-Köksal F, Göncüoglu MC, Möller A, Gerdes A, Frei D (2013) Crustal source of the Late Cretaceous Satansari monzonite (Central Anatolia/Turkey) and its significance for the Alpine geodynamic evolution. J Geodyn 65:82–93. doi:10.1016/j.jog.2012.06.003

    Article  Google Scholar 

  • Kuroda PK, Sandell EB (1954) Geochemistry of molybdenum. Geochim Cosmochim Acta 6(1):35–63

    Article  Google Scholar 

  • Large RR, Gemmell JB, Paulick H, Huston DL (2001) The alteration box plot: a simple approach to understanding the relationship between alteration mineralogy and lithochemistry associated with volcanic-hosted massive sulfide deposits. Econ Geol 96:957–971

    Google Scholar 

  • Magganas A (2007) Plagiogranitic rocks of Evros Ophiolite, NE Greece. Bull Geol Soc Greece 40:884–898

    Google Scholar 

  • McCulloch MT, Cameron WE (1983) Nd-Sr isotopic study of primitive lavas from the troodos ophiolite, cyprus: evidence for a subduction-related setting. Geology 11:727–731

    Article  Google Scholar 

  • Metcalf RV, Shervais JW (2008) Suprasubduction-zone ophiolites: is there really an ophiolite conundrum? In: Wright JE, Shervais JW (ed) Ophiolites, arcs, and batholiths: a tribute to Cliff Hopson, Geological Society of America Special Paper 438:191–222. doi: 10.1130/2008.2438(07)

  • Mirza TA, Ismail SA (2007) Origin of plagiogranites in the Mawat ophiolite complex, Kurdistan region, NE Iraq. J Kirkuk Univ Sci Stud 2(1):1–20

    Google Scholar 

  • Moix P, Beccaletto L, Kozur HW, Hochard C, Rosselet F, Stampfli GM (2008) A new classification of the Turkish terranes and sutures and its implication for the Paleotectonic history of the region. Tectonophysics 451:7–39

    Article  Google Scholar 

  • Mukasa SB, Ludden JN (1987) Uranium-lead isotopic ages of plagiogranites from the Troodos ophiolite, Cyprus, and their tectonic significance. Geology 15:825–828

    Article  Google Scholar 

  • Okay Aİ, Tüysüz O (1999) Tethyan sutures of northern Turkey. In: Durand B, Jolivet L, Horwarth E, Seranne M (ed) The Mediterranean Basins: tertiary extension within the Alpine Orogen. Geological Society, London, Special Publications, 156:475–515

  • Pearce JA (1983) Role of the sub-continental lithosphere in magma genesis at active continental margins. In: Hawkesworth CJ, Norry MJ (eds) Continental basalts and mantle xenoliths. Shiva Publishing Ltd., Cambridge, pp 230–249

    Google Scholar 

  • Pearce JA (2008) Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos 100:14–48

    Article  Google Scholar 

  • Pearce JA, Harris NBW, Tindle AGW (1984a) Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J Petrol 25:956–983

    Article  Google Scholar 

  • Pearce JA, Lippard SJ, Roberts S (1984b) Characteristics and tectonic significance of supra-subduction zone ophiolites. Geol Soc Lond Spec Publ 16:77–94

    Article  Google Scholar 

  • Rautenschlein M, Jenner GA, Hertogen J, Hofmann AW, Kerrich R, Schmincke H-U, White WM (1985) Isotopic and trace element composition of volcanic glasses from the Akaki Canyon, Cyprus: implications for the origin of the Troodos ophiolite. Earth Planet Sci Lett 75:369–383

    Article  Google Scholar 

  • Rolland Y, Galoyan G, Bosch D, Sosson M, Corsini M, Fornari M, Verati C (2009) Jurassic back-arc and Cretaceous hot-spot series in the Armenian ophiolites—implications for the obduction process. Lithos 112:163–187

    Article  Google Scholar 

  • Romer RL, Forster H-J, Breitkreuz C (2001) Intracontinental extensional magmatism with a subduction fingerprint: the late Carboniferous Halle Volcanic Complex (Germany). Contrib Miner Petrol 141:201–221

    Article  Google Scholar 

  • Ruks TW, Piercey SJ, Ryan JJ, Villeneuve ME, Creaser RA (2006) Mid- to Late Paleozoic K-Feldspar Augen granitoids of the Yukon-Tanana Terrane, Yukon, Canada: implications for crustal growth and tectonic evolution of the Northern Cordillera. Geol Soc Am Bull 18:1212–1231

    Article  Google Scholar 

  • Shafaii Moghadam H, Stern RJ, Kimura J-I, Hirahara Y, Senda R, Miyazaki T (2012) Hf–Nd isotope constraints on the origin of Dehshir ophiolite, Central Iran. Isl Arc 21:202–214

    Article  Google Scholar 

  • Shafaii Moghadam H, Stern RJ, Chiaradia M, Rahgoshav M (2013) Geochemistry and tectonic evolution of the Late Cretaceous Gogher-Baft ophiolite, Central Iran. Lithos 168–169:33–47

    Article  Google Scholar 

  • Spitz G, Darling R (1978) Major and minor element lithogeochemical anomalies surrounding the Louvem copper deposit, Val d’Or, Quebec. Can J Earth Sci 15:1161–1169

    Article  Google Scholar 

  • Sun S-S, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts; implications for mantle composition and processes. In: Saunders AD, Norry MJ (ed) Magmatism in the Ocean Basins. Geological Society of London, Special Publications, pp 313–345

  • Tekin UK, Göncüoglu MC, Uzunçimen S (2012) Radiolarian assemblages of Middle and Late Jurassic to Early Late Cretaceous (Cenomanian) ages from an olistolith record pelagic deposition within the Bornova Flysch Zone in western Turkey. Bull Soc Géol Fr 183(4):307–318

    Article  Google Scholar 

  • Tilton GR, Hopson CA, Wright JG (1981) Uranium-lead isotopic ages of the Samail ophiolite with applications to Tethyan ocean ridge tectonics. J Geophys Res 86:2763–2775

    Article  Google Scholar 

  • Toksoy-Köksal F, Göncüoglu MC, Yalınız MK (2001) Petrology of the Kurançalı phlogopite metagabbro: an island arc-type ophiolitic sliver in the Central Anatolian Crystalline Complex. Int Geol Rev 43:624–639

    Article  Google Scholar 

  • Toksoy-Köksal F, Oberhaensli R, Göncüoglu MC (2009a) Hydrous aluminosilicate metasomatism in an intra-oceanic subduction zone: implications from the Kurançalı (Turkey) ultramafic-mafic cumulates within the Alpine Neotethys Ocean. Miner Petrol 95:273–290. doi:10.1007/s00710-009-0044-7

    Article  Google Scholar 

  • Toksoy-Köksal F, Gerdes A, Göncüoglu MC, Möller A, Frei D, Köksal S (2009b) U-Pb age and isotope data from the S- and I-type syn-collisional granites in Ekecikdağ area, Central Anatolia. Geochimica et Cosmochmica Acta, 73, Supplement, Goldschmidt Conference Abstracts A1335

  • Toksoy-Köksal F, Köksal S, Göncüoglu MC (2010) Is a single model adequate to explain origin of the gabbros from Central Anatolia, Turkey? Symposium of Geological Society of America, Tectonic Crossroads: evolving orogens of Eurasia-Africa-Arabia, Ankara, Turkey, Abstracts, p 83

  • Türeli TK, Göncüoglu MC, Akıman O (1993) Origin and petrology of Ekecikdağ Granitoid in western Central Anatolian Massif. Miner Res Exp Bull 115:15–28

    Google Scholar 

  • van Hinsbergen DJJ, Maffione M, Plunder A, Kaymakçı N, Ganerød M, Hendriks BWH, Corfu F, Gürer D, de Gelder GINO, Peters K, McPhee PJ, Brouwer FM, Advokaat EL, Vissers RLM (2016) Tectonic evolution and paleogeography of the Kırşehir Block and the Central Anatolian Ophiolites, Turkey. Tectonics 35(4):983–1014. doi:10.1002/2015TC004018

    Article  Google Scholar 

  • Weiss D, Kieffer B, Maerschalk C, Barling J, de Jong J, Williams GA, Hanano D, Preorius W, Mattielli N, Scoates JS, Goolaerts A, Friedman M, Mahoney JB (2006) High-precision isotopic characterization of USGS reference materials by TIMS and MC–ICP–MS. Geochem Geophys Geosyst 7(8):Q08006. doi:10.1029/2006GC001283

    Google Scholar 

  • Winchester JA, Floyd PA (1977) Geochemical discrimination of different magma series and their different products using immobile elements. Chem Geol 20:325–343

    Article  Google Scholar 

  • Workman RK, Hart SR (2005) Major and trace element composition of the depleted MORB mantle (DMM). Earth Planet Sci Lett 231:53–72

    Article  Google Scholar 

  • Workman RK, Hart SR, Jackson M, Regelous M, Farley KA, Blusztajn J, Kurz M, Staudigel H (2004) Recycled metasomatized lithosphere as the origin of the Enriched Mantle II (EM2) end-member: evidence from the Samoan Volcanic Chain. Geochem Geophys Geosyst 5:Q04008. doi:10.1029/2003GC000623

    Article  Google Scholar 

  • Yalınız MK, Floyd PA, Göncüoglu MC (1996) Supra-subduction zone ophiolites of Central Anatolia, geochemical evidence from the Sarikaraman ophiolite, Aksaray, Turkey. Miner Mag 60:697–710

    Article  Google Scholar 

  • Yalınız MK, Aydın NS, Göncüoglu MC, Parlak O (1999) Terlemez quartz monzonite of Central Anatolia (Aksaray-Sarıkaraman): age, petrogenesis and geotectonic implications for ophiolite emplacement. Geol J 34:233–242

    Article  Google Scholar 

  • Yalınız MK, Floyd PA, Göncüoglu MC (2000) Geochemistry of volcanic rocks from the Çiçekdag ophiolite, Central Anatolia, Turkey, and their inferred tectonic setting within the northern branch of the Neotethyan ocean. In: Bozkurt E, Winchester JA, Piper JDA (ed) Tectonics and magmatism in Turkey and the surrounding area, Geological Society of London, Special Publications, 173:203–218

  • Zachariadis PT (2007) Ophiolites of the eastern Vardar Zone, N. Greece. Dissertationi Institut für Geowissenschaften, Johannes Gutenberg Universität, Mainz, Germany, p 221

  • Zindler A, Hart SR (1986) Chemical Geodynamics. Annu Rev Earth Planet Sci 14:493–571

    Article  Google Scholar 

Download references

Acknowledgments

Authors thank Radiogenic Isotope Laboratory of Middle East Technical University—Central Laboratory, for Sr–Nd–Pb isotope analyses. S. Köksal thanks to Prof. Dr. Rolf L. Romer for his supervision in the isotope ratio methods, Dr. Selin Süer and Sultan Atalay for their assistance during the clean laboratory facilities and Remzi Saraçoğlu for technical support. An anonymous reviewer, guest editor and Dr. Semih Gürsu are acknowledged for their constructive reviews and comments, which significantly helped to modify the manuscript. Authors thank to IGCP 589 Project leader Prof. Dr. Jin Xiaochi for encouraging us to contribute the special volume “Asian Tethyan Realm.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serhat Köksal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Köksal, S., Toksoy-Köksal, F. & Göncüoglu, M. Petrogenesis and geodynamics of plagiogranites from Central Turkey (Ekecikdağ/Aksaray): new geochemical and isotopic data for generation in an arc basin system within the northern branch of Neotethys. Int J Earth Sci (Geol Rundsch) 106, 1181–1203 (2017). https://doi.org/10.1007/s00531-016-1401-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-016-1401-5

Keywords

Navigation