Skip to main content

Advertisement

Log in

The origin of oil in the Cretaceous succession from the South Pars Oil Layer of the Persian Gulf

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

The origin of the oil in Barremian–Hauterivian and Albian age source rock samples from two oil wells (SPO-2 and SPO-3) in the South Pars oil field has been investigated by analyzing the quantity of total organic carbon (TOC) and thermal maturity of organic matter (OM). The source rocks were found in the interval 1,000–1,044 m for the Kazhdumi Formation (Albian) and 1,157–1,230 m for the Gadvan Formation (Barremian–Hauterivian). Elemental analysis was carried out on 36 samples from the source rock candidates (Gadvan and Kazhdumi formations) of the Cretaceous succession of the South Pars Oil Layer (SPOL). This analysis indicated that the OM of the Barremian–Hauterivian and Albian samples in the SPOL was composed of kerogen Types II and II–III, respectively. The average TOC of analyzed samples is less than 1 wt%, suggesting that the Cretaceous source rocks are poor hydrocarbon (HC) producers. Thermal maturity and Ro values revealed that more than 90 % of oil samples are immature. The source of the analyzed samples taken from Gadvan and Kazhdumi formations most likely contained a content high in mixed plant and marine algal OM deposited under oxic to suboxic bottom water conditions. The Pristane/nC17 versus Phytane/nC18 diagram showed Type II–III kerogen of mixture environments for source rock samples from the SPOL. Burial history modeling indicates that at the end of the Cretaceous time, pre-Permian sediments remained immature in the Qatar Arch. Therefore, lateral migration of HC from the nearby Cretaceous source rock kitchens toward the north and south of the Qatar Arch is the most probable origin for the significant oils in the SPOL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Aali J, Rahmani O (2011) Evidences for secondary cracking of oil in South Pars field, Persian Gulf, Iran. J Petrol Sci Eng 76:85–92

    Article  Google Scholar 

  • Aali J, Rahmani O (2012) H2S-Origin in South Pars gas field from Persian Gulf, Iran. J Petrol Sci Eng 86–87:217–224

    Article  Google Scholar 

  • Aali J, Rahimpour–Bonab H, Kamali MR (2006) Geochemistry and origin of the world’s largest gas field from Persian Gulf, Iran. J Petrol Sci Eng 50:161–175

    Article  Google Scholar 

  • Abrams AM, Narimanov AA (1997) Geochemical evaluation of hydrocarbons and their potential sources in the western South Caspian depression, Republic of Azerbaijan. Mar Pet Geol 14:451–468

    Article  Google Scholar 

  • Akinlua A, Ajayi TR, Jarvie DM, Adeleke BB (2005) A re-appraisal of the application of RockEval pyrolysis to source rock studies in the Nigeria Delta. J Pet Geol 28(4):39–48

    Article  Google Scholar 

  • Al-Ameri TK (2011) Khasib and Tannuma oil sources, East Baghdad oil field, Iraq. Mar Pet Geol 28:880–894

    Article  Google Scholar 

  • Al-Husseini MI (2000) Origin of the Arabian Plate Structures: amar Collision and Najd Rift. GeoArabia 5:527–542

    Google Scholar 

  • Alshahran AS, Nairn AEM (1997) Sedimentary basins and petroleum geology of the middle east. Elsevier, Netherlands

    Google Scholar 

  • Barker CE (1996) A comparison of vitrinite reflectance measurements made on whole-rock and dispersed organic matter concentrate mounts. Org Geochem 24(2):251–256

    Article  Google Scholar 

  • Behar F, Beaumont V, De Barros-Penteado HL (2001) Rock-Eval 6 technology: performances and developments. Oil and Gas Science and Technology. Revue de l’Institut Franc¸ais du Pétrole 56:111–134

  • Bordenave ML, Burwood R (1990) Source rock distribution and maturation in the Zagros orogenic belt, provenance of the Asmari and Sarvak reservoirs oil accumulations. Org Geochem 16:369–387

    Article  Google Scholar 

  • Curiale JA (2008) Oil-source rock correlations–Limitations and recommendations. Org Geochem 39:1150–1161

    Article  Google Scholar 

  • Durand B (1980) Sedimentary organic matter and kerogen. Definition and quantitative importance of kerogen. In: Durand B (ed) Kerogen, insoluble organic matter from sedimentary rocks. Editions Technip, Paris, pp 13–34

    Google Scholar 

  • Durand B, Espitalié J (1973) Evolution de la matie`re organique au cours de l’enfouissement des sédiments. Compte rendus de l’Académie des Sciences (Paris) 276:2253–2256

    Google Scholar 

  • Ebukanson EJ, Kinghorn RRF (1985) Kerogen facies in the major Jurassic mud rock formations of Southern England and the implication on the depositional environments of their precursors. J Pet Geol 8:435–462

    Article  Google Scholar 

  • Espitalié J, Bordenave ML (1993) Rock–Eval pyrolysis. In: Bordenave ML (ed) Applied petroleum geochemistry. Editions Technip, Paris, pp 237–261

    Google Scholar 

  • Espitalié J, Madec M, Tisssot B, Menning JJ, Leplate P (1977) Source rock characterization method for petroleum exploration. In: Proceeding of the 9th annual offshore technology conference, vol 3, pp 439–448

  • Espitalié J, Deroo G, Marquis F (1985) La pyrolyse Rock Eval et ses applications. 2de partie. Revue de l’lnstitut Franc¸ ais du Pétrole 40:755–784

  • Ghasemi-Nejad E, Head MJ, Naderi M (2009) Palynology and petroleum potential of the Kazhdumi Formation (Cretaceous: Albian–Cenomanian) in the South Pars field, northern Persian Gulf. Mar Pet Geol 26:805–816

    Article  Google Scholar 

  • Grantham PJ, Wakefield LL (1988) Variations in the sterane carbon number distribution of marine source rocks derived crude oils through geological time. Org Geochem 12:61–74

    Article  Google Scholar 

  • Gürgey K (2003) Correlation, alteration, and origin of hydrocarbons in the GCA, Bahar, and Gum Adasi fields, western South Caspian Basin: geochemical and multivariate statistical assessments. J Marine Petrol Geol 20:1119–1139

    Article  Google Scholar 

  • Hao F, Chen JY (1992) The cause and mechanism of vitrinite reflectance anomalies. J Pet Geol 15:419–434

    Google Scholar 

  • Hao F, Chen JY, Sun YC, Liu YZ (1993) Application of organic facies studies to sedimentary basin analysis case study from the Yitong Graben, China. Org Geochem 20:27–43

    Article  Google Scholar 

  • Hao F, Zhou X, Zhu Y, Bao X, Kong Q (2009) Mechanisms of petroleum accumulation in the Bozhong sub-basin, Bohai Bay Basin, China. Part 1: origin and occurrence of crude oils. J Marine Petrol Geol 26:1528–1542

    Article  Google Scholar 

  • Hetényi M, Sajgó C, Vetö I, Brukner–Wein A, Szántó Z (2004) Organic matter in a low productivity anoxic intraplatform basin in the Triassic Tethys. Org Geochem 35:1201–1219

    Article  Google Scholar 

  • Himus GW (1951) Observations on the composition of kerogen rocks and the chemical constitution of kerogen. In: Second oil shale and cannel coal conference. Institute of Petroleum, London, pp 1–22

  • Hunt JM (1996) Petroleum geochemistry and geology, 2ed. W.H. Freeman and Company, New York

  • Kashfi MS (1992) Geology of the Permian ‘supergiant’ gas reservoirs in the greater Persian Gulf area. J Pet Geol 15:465–480

    Google Scholar 

  • Kashfi MS (2000) Greater Persian Gulf Permian–Triassic stratigraphic nomenclature requires study. Oil Gas J Tulsa 6:36–44

    Google Scholar 

  • Konert G, Afif AM, AL-Hajari SA, Droste H (2001) Paleozoic stratigraphy and hydrocarbon habitat of the Arabian Plate. GeoArabia 6(3):407–442

    Google Scholar 

  • Lafargue E, Marquis F, Pillot D (1998) Rock–Eval 6 applications in hydrocarbon exploration, production and soils contamination studies. Oil and Gas Science and Technology–Revue de l’Institut Franc¸ais du Pétrole 53:421–437

  • Langford FF, Balanc-Valleron MM (1990) Interpreting Rock–Eval pyrolysis data using graphs of pyrolisable hydrocarbons vs. total organic carbon. AAPG Bull 74:799–804

    Google Scholar 

  • Langrock U, Stein R, Lipinski M, Brumsack HJ (2003) Late Jurassic to Early Cretaceous black shale formation and paleoenvironment in high northern latitudes-examples from the Norwegian–Greenland–Seaway. Paleoceanography 18(3). doi:10.1029/2002PA000867

  • Mahmoud MD, Vaslet D, Husseini MI (1992) The lower Silurian Qalibah formation of Saudi Arabia: an important hydrocarbon source rock. AAPG Bull 76:1491–1506

    Google Scholar 

  • Meyers PA (1997) Organic geochemical proxies of paleoceanographic, paleolimnologic, and paleoclimatic processes. Org Geochem 27:213–250

    Article  Google Scholar 

  • Milner P (1998) Source rock distribution and thermal maturity in the Southern Arabian Peninsula. GeoArabia 3(3):339–356

    Google Scholar 

  • Montero-Serrano JC, Martinez M, Riboulleau A, Tribovillard N, Márquez G, Gutiérrez-Martin JV (2010) Assessment of the oil source–rock potential of the Pedregoso Formation (Early Miocene) in the Falcón Basin of northwestern Venezuela. Mar Pet Geol 27(5):1107–1118

    Article  Google Scholar 

  • Mukhopadhyay PK (1994) Vitrinite reflectance as a maturity parameter. In: Vitrinite reflectance as a maturity parameter. Amer. Chem. SOC, Washington, DC, pp 1–24

  • Mutterlose J, Brumsack HJ, Floegel S, Hay WW, Klein C, Langrock U, Lipinski M, Ricken W, Soeding E, Stein R, Swientek O (2003) The Norwegian–Greenland Seaway: a key area for understanding Late Jurassic to early cretaceous paleoenvironments. Paleoceanography 18(1). doi:10.1029/2001PA000625

  • Pepper AS, Corvi PJ (1995) Simple kinetic models of petroleum formation. Part III: modeling an open system. Mar Pet Geol 12:417–452

    Article  Google Scholar 

  • Pepper AS, Dodd TA (1995) Simple kinetic models of petroleum formation. Part II: oil–gas cracking. Mar Pet Geol 12:321–340

    Article  Google Scholar 

  • Peters KE (1986) Guidelines for evaluating petroleum source rock using programmed pyrolysis. AAPG Bull 70:318–329

    Google Scholar 

  • Peters KE, Cassa MR (1994) Applied source–rock geochemistry. In: Magoon LB, Dow WG (eds) The petroleum system-from source to trap. Am Assoc Petrol Geol Memoir 60:93–120

  • Peters KE, Moldowan JM (1993) The biomarker guide: interpreting molecular fossils in petroleum and ancient sediments. Prentice Hall, Englewood Cliffs

    Google Scholar 

  • Peters KE, Walters CC, Moldowan JM (2005) The biomarker guide. Cambridge University Press, Cambridge, vol 2, p 1155

  • Petersen H, Tru V, Nielsen L, Duc N, Nytoft H (2005) Source rock properties of lacustrine mudstones and coals (Oligocene Dong Ho Formation), onshore Song Hong Basin, northern Vietnam. J Petrol Geol 28:19–38

    Article  Google Scholar 

  • Rahimpour-Bonab H (2007) A procedure for appraisal of a hydrocarbon reservoir continuity and quantification of its heterogeneity. J Petrol Sci Eng 58:1–12

    Article  Google Scholar 

  • Rahmani O, Aali J, Mohseni H, Rahimpour-Bonab H, Zalaghaie S (2010) Organic geochemistry of Gadvan and Kazhdumi Formations (Cretaceous) in South Pars field, Persian Gulf, Iran. J Petrol Sci Eng 70:57–66

    Article  Google Scholar 

  • Schiefelbein C, Cameron N (1997) In: Frazer AJ et al (eds) Petroleum geology of Southeast Asia. Geol Soc Spec Publ 126:143–146

  • Sharland PR, Archer R, Casey DM, Davies RB, Hall SH, Heward AP, Horbury AD, Simmons MD (2001) Arabian Plate sequence stratigraphy. GeoArabia Spec. Pub 2

  • Snowdon LR, Powell TG (1982) Immature oil-condensate modification of hydrocarbon generation model for terrestrial organic matter. Am Assoc Pet Geol Bull 66:775–788

    Google Scholar 

  • Suggate PR (1998) Relations between depth of burial, vitrinite reflectance and geothermal gradient. J Pet Geol 21:5–32

    Article  Google Scholar 

  • Sykes R, Snowdon LR (2002) Guidelines for assessing the petroleum potential of coaly source rocks using Rock–Eval pyrolysis. Org Geochem 33:1441–1455

    Article  Google Scholar 

  • Tavakoli V, Rahimpour-Bonab H, Esrafili-Dizaji B (2011) Diagenetic controlled reservoir quality of South Pars gas field, an integrated approach. CR Geosci 343:55–71

    Article  Google Scholar 

  • Tissot BP, Welte DH (1984) Petroleum formation and occurrence, 2nd edn. Springer, Berlin

    Google Scholar 

  • Tissot B, Durand B, Espitalié J, Combaz A (1974) Influence of nature and diagenesis of organic matter in formation of petroleum. Am Assoc Pet Geol Bull 58:499–506

    Google Scholar 

  • Todd SP, Dunn ME, Barwise AJG (1997) Characterizing petroleum charge systems in the Tertiary of SE Asia. In: Fraser AJ et al (eds) Petroleum geology of Southeast Asia. Geol Soc Spec Publ 126:25–47

  • Vandenbroucke M (2003) Kerogen: from types to models of chemical structure. Oil Gas Sci Technol Revue de l’Institut Français du Pétrole 58(2):243–269

    Article  Google Scholar 

  • Vandenbroucke M, Largeau C (2007) Kerogen origin, evolution and structure. Org Geochem 38:719–833

    Article  Google Scholar 

  • Volkman JK, Barrett SM, Blackburn SI (1999) Eustigmatophyte microalgae are potential sources of C29 sterols, C22–C28 n-alcohols and C28–C32 n-alkyl diols in freshwater environments. Org Geochem 30:307–318

    Article  Google Scholar 

  • Wang QJ, Chen JY (1988) Oil and gas geochemistry. China University of Geosciences Press (in Chinese), Wuhan

    Google Scholar 

  • Wang L, Wang C, Li Y, Zhu L, Wei Y (2011) Organic geochemistry of potential source rocks in the Tertiary Dingqinghu Formation, Nima basin, central Tibet. J Pet Geol 34(1):67–85

    Article  Google Scholar 

  • Whelan JK, Thompson–Rizer CL (1993) Chemical methods for assessing kerogen and protokerogen types and maturity. In: Engel MH, Macko SA (eds) Organic geochemistry-principles and applications. Plenum Press, New York, pp 289–353

    Chapter  Google Scholar 

Download references

Acknowledgments

The authors thank the Pars Oil and Gas Company for data preparation and materials for analyses and gratefully acknowledge the Universiti Teknologi Malaysia (UTM). We also appreciate the publications of “Elsevier” and “John Wiley and Sons” for permission of reusing and reprinting respective figures and tables based on the licences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omeid Rahmani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rahmani, O., Aali, J., Junin, R. et al. The origin of oil in the Cretaceous succession from the South Pars Oil Layer of the Persian Gulf. Int J Earth Sci (Geol Rundsch) 102, 1337–1355 (2013). https://doi.org/10.1007/s00531-012-0855-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-012-0855-3

Keywords

Navigation